custom masking products
Published

Hardcoat Anodizing Controls

Question: We operate a hardcoat anodize tank and we are having trouble getting thicker coatings of 2.0 mils, or slightly greater, without running the loads for more than an hour.

Share

Question:

We operate a hardcoat anodize tank and we are having trouble getting thicker coatings of 2.0 mils, or slightly greater, without running the loads for more than an hour. Even when we do this, the coating thickness results are inconsistent. We operate the bath at 25°F. When the parts are put in the tank we ramp up the voltage to what we call "starting voltage" and then let the parts run until a certain maximum voltage is reached. We've learned what the maximum voltages are for various parts that we run. Fairly recently, we raised the concentration of sulfuric in the bath to about 350 g/liter in an effort to achieve thicker coatings more easily. It helped, but we are still getting inconsistent results and anodizing too long. How can we get this situation under control? P. S.

Answer:

The preferred method for anodizing parts to be hardcoated is to run by current density, not by voltage as you are doing now. If a known amount of current is passed through the parts under controlled conditions of chemistry and temperature, the time to anodize to the desired anodic coating thickness can be calculated very closely. Once this is done, you can bring your sulfuric concentration back into line and you can even raise the temperature of the bath if you wish. All these steps will save you money and give you better results than you are getting now. What a deal! It sounds like magic, but it's not.

Briefly, here's how you do it:

To anodize by current density the surface area of the parts being anodized and the rack that they are attached to must be known. If there is no computer generated drawing that is capable of calculating the surface area of the parts, then the parts can be physically measured and the surface area to be anodized can usually be estimated pretty closely. Also, do this for the rack. Keep these figures in a job file for use of future jobs. Now that the surface area of the load is known, you must decide at what current density to anodize. In general, hardcoat is anodized within a range of 24-40asf. A "typical" load of 6061, 6063 or 7075 alloy parts would anodize well at 36 asf. You know the square footage, you can do the math.

Now that the amperage for the load is known you can figure out how long to anodize the load to achieve the desired coating thickness by using the "Rule of 720" which says:

Minutes to Anodize =
mils of coating desired x 720

Amps per square foot

Minutes mils of coating desired × 720 to anodize Amps per square foot

Bring the electrolyte concentration to within the range of 165-220 g/liter. Keep the dissolved aluminum concentration in the 5-12 g/liter range. Raise the temperature of the bath to between 40-50°F. Now you will be able to get approximately 1.0 mil coating per 20 min. Use an organic additive in the bath and cut the anodizing time even further.

Luster-On Products
PMTS 2025 Register Now!
OptiCenter All-in-One OC11
Metal Pretreatment Technology
Heatmax Heaters ad with immersion heaters
The Finishing Industry’s Education and Networking Resource
Gardner Intelligence
Filtration Systems
Pretreatment Washer and Finishing Equipment
find masking products online
Heatmax Heaters ad with immersion heaters
plating and surface finishing additives

Related Content

racking

Chicago-Based Anodizer Doubles Capacity, Enhancing Technology

Chicago Anodizing Company recently completed a major renovation, increasing its capacity for hardcoat anodizing and Type II anodizing.

Read More
aerospace

Anodizing for Bonding Applications in Aerospace

Anodizing for pre-prep bonding bridges the gap between metallic and composite worlds, as it provides a superior surface in many applications on aluminum components for bonding to these composites. 

Read More
Anodizing

Zinc Electroplating

Choosing the best process for your operation.

Read More
sustainability

Trivalent Chrome Overview

As the finishing industry begins to move away from the use of hexavalent chromium to trivalent chromium, what factors should finishers consider as they make new investments? Mark Schario, chief technology officer for Columbia Chemical offers a helpful overview of this complicated topic.

Read More

Read Next

Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Pollution Control

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Sponsored

Masking Solutions for Medical Applications

According to Custom Fabricating and Supplies, a cleanroom is ideal for converting, die cutting, laminating, slitting, packaging and assembly of medical-grade products.

Read More
cfs masking