

### Interesting Facts about Phosphorus

- Phosphorus is the 15 element on the periodic table
- It is essential to all life with the average human body containing 26.5 ounces
- The average adult excretes 1.3-1.5 grams per day
- Means bringer of light



# Uses for phosphorus





### Eutrophication

- Caused by excessive phosphorus in water
- Algae Blooms
- ▶ Toxins from algae
- ► Fish Kills
- Odors
- Foul tastes in drinking water supply
- Unpleasant to see
- Lakes are closed to public



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

#### EPA STEPS IN TO FIX THE PROBLEM

- Clean Water Act of 1972 gave the EPA permission to establish guidelines for water and wastewater
- ► EPA establishes standards for wastewater discharge of phosphates to receiving bodies of water:

Streams and Rivers 0.1ppm

2. Streams entering lakes 0.05ppm

3. Lakes and Reservoirs 0.025ppm

#### What the EPA Recommends

The EPA guidelines for nutrient management recommend that P.O.T.W.s charge surcharges whenever the following limits are not met:

- BOD limit of 210ppm with a surcharge of \$0.232 per pound
- ▶ TSS limit of 230ppm with a surcharge of \$0.186 per pound
- ► Total Nitrogen limit of 30ppm with a surcharge of \$1.17 per pound
- ► Total Phosphorus limit of 12ppm with a surcharge of \$1.32 per pound

### How do SURCHARGES work

- An industry is given a permitted amount of phosphorus they can discharge (example: 15lbs per day with a total discharge flow of 150,000GPD)
- Formula for converting pounds to ppm: ppm= pounds of chemical/ MGDx8.34
- ▶ 11.99ppm=15lbs of P/.15MGDX8.34
- ppm=12 phosphorus can be discharged to meet permit, anything more can carry a surcharge per EPA recommendations

## How do you remove phosphorus?

#### <u>Chemical Removal</u>

- Calcium reacts with alkalinity to form calcium carbonate. At a pH over 10 the excess calcium bonds with phosphorus to precipitate as hydroxyapatite
- Copperas, or iron, bond with phosphorus to form iron phosphate which easily precipitates out
- Alum works much like calcium, but its usage will be based upon removal requirements

## Chemical Phosphate Removal

- Research is being done on new technology
- Long track record of proven success
- Readily available
- Easy to do
- Systems can be small foot-prints
- Can be cost effective



## Biological Removal (BPR)

- Bacteria capable of storing phosphorus as polyphosphate are PAO
- Different set-ups for systems
- In industrial applications, used as a "Final Polish" to achieve permit limits

## Biological Phosphate Removal

- Research is being done on new technology
- Proven to be efficient
- Multiple types of systems to chose from
- Training is readily available to new operators



## So...What's the future look like?





#### We want a clean environment

- Hypoxia Task Force- 11 states and the EPA working together to reduce the size of the Gulf of Mexico's DEAD ZONE
- Industries are driving research for better practices from non-phosphate cleaners to alternatives to phosphate-coatings
- Nutrient Management Plans- each state is working on a tailored plan for recovery of impaired waters

## Gulf of Mexico Hypoxia Task Force

- Largest Hypoxia Zone in United States
- Task force established in May, 1998 with Charter
- Members are Federal, State and Tribal
- Working to solve the problem



## Industry Driven Research

- Non-phosphate cleaners are being widely used
- Zirconium is replacing phosphate in paint-prep lines
- Phosphate recovery systems are being utilized
- New Technologies for phosphate lines are coming

## Nutrient Management Plans



