high-performance passivates
Published

How to Combat Roughness in Cyanide Copper Bath

Q. We have been experiencing roughness in our cyanide copper bath. What should we be looking at to fix this? Plating expert Adam Blakeley has the answer. 

Share

Q. We have been experiencing roughness in our cyanide copper bath. What should we be looking at to fix this?

A. Copper cyanide baths use oxygen-free, high-conductivity (OFHC) anodes. Oxygen levels of 0.001 percent are recommended to ensure proper anodic dissolution, which limits sludging and particulate formation. Cheaper anodes often have up to three times the oxygen concentration or more, which can lead to improper anodic dissolution.

When operating improperly, these OFHC anodes develop an oxide film with the potential to detach and aggregate into small particles or flakes, often incorporated or occluded in the copper deposit, resulting in roughness.

Polarized Anodes

Anodes can become partially or entirely polarized, a phenomenon where the anodes shutdown, become insulated and cease to properly conduct current or dissolve the metal anode. Insufficient current, excessive voltage or bath composition imbalances can cause this. The anodes are then forced to dissolve along grain boundaries and chip off in metallic chunks versus dissolving ionically. Anodic material should be regularly replaced to maintain anode surface area at a 3:1 anode to cathode. This will alleviate the potential for polarization, as will monitoring voltage levels in the tank. A significant amount of copper metal (5 lbs.) dissolves in a typical cyanide copper bath every thousand amp-hours. The basket hooks should also be checked for conductivity using tong-testers to ensure sufficient amperage.

Anode Depolarizers

Free cyanide should be properly maintained (between 1-2 oz./gal.) to assist in anode corrosion and to reduce heavy anode filming. Rochelle salts, or potassium sodium tartrate, also aid in anode corrosion and thus reduce particulate formation and excessive sludging. 

Anode Bags

Cotton anode bags should be used to prevent sludge and non-ionic copper particles from entering the bath. These bags should be inspected and changed out regularly.

The weave of the bag should not be so tight as to inhibit solution flow, but also not so coarse that small particles can escape. Sometimes the pores of these bags become plugged, which cuts down on the flow rate and leads to polarization. Polarized anodes may also increase the concentration of carbonates, which can lead to roughness and other serious quality issues.

Anode Polarization Warning Signs

Monitoring voltage increases using volt-ohm meters and amperage using tong-testers is an easy way to spot possible anode polarization. A decrease in the caustic content, an increase in the free cyanide or a decrease in the copper cyanide concentration are also indications of possible anode polarization.

Silicates and other impurities can build up from the use of poor-quality chemicals. Silicates can also enter from the pretreatment side. Cleaners often contain metasilicates and if dragged into the copper bath, will rapidly plug up the anode bags. Improving the flow rate of the rinse water and increasing the dump schedule for these rinse tanks and the acid activation tank will significantly reduce contaminants.

Rack Integrity and Substrate

Holes or tears in the PVC or plastisol coating of racks due to warping and abrasive interactions after continued use may cause the development of nodules from the plating baths that can, due to their size and poor mechanical adhesion strength, fall off as particles. The same can happen with the substrate, due to the formation of nodules, asperities and other defects from poor grinding and polishing, especially when processing die castings. These mechanical procedures often produce metal fines that attract electrons and build up metal deposit thickness much faster than the rest of the part. This buildup in metal lacks proper atomic adhesion and eventually falls off to form roughness on the part.

Filtration

It is possible that the pore size of the filters in the copper bath are too high for whatever source of contamination needs to be removed. A lower pore size will help trap smaller particles, as will increasing the turnover rate and level of agitation because more solution is being moved to the filters. Lower pore size tends to increase the amount of material collected by the bath, forcing the pressure on the filter to increase more quickly due to the rapid accumulation of unwanted elements, resulting in more frequent filter changes.

Some diatomaceous earth materials and carbon products are insoluble in alkaline mediums, so filter aids should be tested for their solubility and solution compatibility. Siliceous filter media will build up silicates in the bath, but cellulose powder is a good alternative. Calcium and magnesium salts in hard water can sometimes precipitate out to cause roughness. 

Insufficient Cleaning

Failure to clean particles from the substrate, especially buffing compounds and even mold release oils and machining lubricants, may lead to roughness as the anodes become coated with this material, resulting in polarization. These oils can also become incorporated into the deposit itself, creating roughness.

To avoid roughness in a cyanide copper bath, it is important to purchase high-quality anodes and chemicals, inspect anode bags and rack coatings, ensure sufficient filtration and agitation, test the chemistry and make necessary additions. Also, check the bus bars and racks for conductivity, improve rinsing practices and ensure substrate preparation, both mechanical and chemical, is correct.  

 


Originally published in the August 2017 issue. 

 

Hitachi High-Tech FT200 series
Luster-On Products
FISCHERSCOPE® XAN® LIQUID ANALYZER
KCH Engineered Systems
High-performace passivates
New Acid-Free Bright Nickel Process
PMTS 2025 Register Now!
Gardner Intelligence
PF Podcast
Pretreatment Washer and Finishing Equipment
Filtration Systems
find masking products online

Related Content

nasf

NASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters - April 2022-March 2023

This NASF-AESF Foundation research project report covers project work from April 2022 to March 2023 at the University of Illinois at Chicago.  The overall objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater.  Initial results for the oxidation of PFOA with three different catalysts are discussed.    

Read More
Electroplating

Top 5 Areas to Consider Automation of Plating Operations

Automation for finishing operations can lead to improvements in process time, repeatability and consistency of quality. Yet, processes that make sense to explore for these operational efficiencies may not always be readily apparent.  

Read More
nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 7th Quarterly Report

The NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS and related chemicals in plating wastewater streams, studying PFAS destruction via electrooxidation and electrocoagulation.  Our last report described the results from experiments of EO with a Magnéli phase Ti4O7 anode on the degradation of eight perfluoroalkyl acids (PFAAs).  In this seven quarter report, we describe work to further explore how the degradation of different PFAAs are related to their molecular structures.

Read More
energy

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 10th Quarterly Report

The NASF-AESF Foundation Research Board selected a project addressing the problem of PFAS and related chemicals in plating wastewater streams.  This report covers the 10th quarter of work (April-June 2023).  Here, we examine the effect of surface fluorination of Ti4O7 anodes on PFAS degradation performance in terms of energy performance as well as formation of chlorate and perchlorate when chloride is present in the solution.  The full paper on this work can be accessed and printed at short.pfonline.com/NASF24Feb2.

Read More

Read Next

Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
workforce development

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
Pollution Control

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Fischer measurement technology