ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
Published

Painting Q&A: Recirculating Air

Why should you recirculate the air in a paint booth?

Steve Houston, Col-Met Spray Booths Inc.

Share

Q. When and why should you consider recirculating air in a paint booth?

A. The first responsibility of a paint booth is to contain over-sprayed material inside the booth and collect the over-sprayed material into filters. The air moves through these filters, arresting the airborne particles enabling the air to continue through the filter bank and extracting any solvent and/or volatile organic compounds (VOC) that may be in the air stream, evacuating them out through the duct work outside the building.

When you think about air, understand how it is measured. We measure air mainly in three ways:

  • Pounds per square inch (psi), which measures the compressed pressure of air.
  • Cubic feet per minute (cfm), which measures volume.
  • Lineal feet per minute (lfpm or fpm), which measures the velocity of air.

To assure your booth is designed properly, calculate the space you are moving air through to determine the correct volume of air (cfm) needed to reach your desired velocity of air (lfpm). Typically this air velocity runs around 100 lfpm. Once you understand the volume of air needed, based on the design velocity, you can determine the size of the fan required, the number of filters needed and the size of ductwork required to move the appropriate amount of air.

When we understand these principles, we should also keep in mind that when the paint booth draws the air through its filters, it is extracting from the atmosphere around it and does not replace that air. If there is not enough atmospheric air replenishment, an air makeup unit (AMU) must be incorporated into the design. The AMU is used to replace the air the paint booth removed so the booth can maintain its designed air velocity. It is also common to incorporate heat and/or cooling of the returned air for flashing or force drying of coatings or to simply create a controlled environment.

But when is recirculation a viable option? The idea behind recirculation is to reuse or recirculate a percentage of the total air moving into the spray area so that less than 100 percent is actually exhausted to atmosphere. A portion or percentage is exhausted, and the remaining percentage is returned back into the air stream, reducing the amount of air that is extracted from the atmosphere.

Recirculating a percentage of the spray booth air has two key advantages:

The lower amount of air that is exhausted from the building reduces the size of the equipment needed.

If the exhaust stream has enough solvent content to require abatement (destruction of VOCs), recirculation will concentrate the VOC and provide a more fuel-rich airflow.

Both of these air volume reduction issues will reduce the cost of operating the system. Lower AMU on the front end reduces the capital cost and the cost associated with heating air makeup, and a more fuel-rich, lower volume exhaust stream reduces capital cost and operating cost in a system that uses abatement equipment for VOC destruction.

The recirculated air volume does have a higher concentration of solvent than a booth with a typical exhaust arrangement that exhausts 100 percent of the air volume. From a safety standpoint­—especially in manned spray areas­—keep in mind that you are extracting contaminated air which contains flashing solvents in the air stream and must be measured to assure a safe environment. The spray booth will need a monitor located in the ductwork to measure the volume of solvent in the airstream. Rules regarding concentration of solvent in the booth require that the volume measured must always be below 25 percent of the lower flammable level. Recirculation is a very viable and energy-efficient option when your system is properly designed.    

Steve Houston has been a business leader for more than 30 years.  He is currently the chief marketing officer at Col-Met Engineered Finishing Solutions in Rockwall, Texas.

Originally published in the December 2015 issue.

ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
Precision gear pumps
Your Best Finish Starts With Us!
Heatmax Heaters ad with immersion heaters
The Finishing Industry’s Education and Networking Resource
OptiCenter All-in-One OC11
New Acid-Free Bright Nickel Process
Pretreatment Washer and Finishing Equipment
Heatmax Heaters ad with immersion heaters
plating and surface finishing additives
Gardner Intelligence
PF Podcast

Related Content

Electroplating

Top 5 Areas to Consider Automation of Plating Operations

Automation for finishing operations can lead to improvements in process time, repeatability and consistency of quality. Yet, processes that make sense to explore for these operational efficiencies may not always be readily apparent.  

Read More
Liquid Coating

Defoamer Designed for Waterborne Coating, Printing Ink Formulations

Evonik’s Tego Foamex 812 exemplifies the company’s sustainability strategy for the paintings, coatings and inks industry.

Read More
nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 10th Quarterly Report

The NASF-AESF Foundation Research Board selected a project addressing the problem of PFAS and related chemicals in plating wastewater streams.  This report covers the 10th quarter of work (April-June 2023).  Here, we examine the effect of surface fluorination of Ti4O7 anodes on PFAS degradation performance in terms of energy performance as well as formation of chlorate and perchlorate when chloride is present in the solution.  The full paper on this work can be accessed and printed at short.pfonline.com/NASF24Feb2.

Read More

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 9th Quarterly Report

The NASF-AESF Foundation Research Board selected a project addressing the problem of PFAS and related chemicals in plating wastewater streams.  This report covers the ninth quarter of work (January-March 2023).  In this report, we describe our work on evaluating the performance of PFAS degradation by electrooxidation using surface fluorinated Ti4O7 anodes in batch mode.

Read More

Read Next

regulation

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Sponsored

Masking Solutions for Medical Applications

According to Custom Fabricating and Supplies, a cleanroom is ideal for converting, die cutting, laminating, slitting, packaging and assembly of medical-grade products.

Read More
ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS