Fischer measurement technology
Published

Selecting a Vibratory Finisher

Can you recommend selection criteria for buying vibratory finishing machines?

Share

Q. We have several vibratory finishing machines. Some are bowl styles with internal separation, one is a racetrack design and some are straight-through tub designs with external separation; four different manufacturers are represented, and are all at least 10 years old. I am creating a standard by which future machine purchases will be evaluated with the long-range goal being to reduce the variety and improve the performance of the vibratory finishers we operate.


Can you recommend selection criteria for buying vibratory finishing machines? J.C.

 

A. Is the age of your machines due to purchasing older, used equipment or did you purchase new machines 10 or more years ago? I ask that because it is important to know how long ago your company decided that vibratory finishing was the process of choice when reviewing other mass finishing processes such as blast finishing, centrifugal disc finishing, etc. I will assume the decision in favor of vibratory is valid, and you are only interested only in selecting the equipment features or brands.


All of your equipment will separate the parts from the media at the end of the time cycle, some with internal screen decks in bowl or racetrack designs, and some with external screen decks as with your straight-through, continuous machines. Short time cycles allow you to use single- pass machines, while longer time cycles generally require internal separators that can be activated when needed. You already have each of these designs, and I’m assuming you know when and why to prefer a particular design. I will give you some guidelines to use in selecting equipment of these various designs.


First and foremost has to be reliability, and the availability of spare parts when needed. You already have considerable experience with different brands, making that your primary source of information.


Bowl machines have fewer moving parts and history has proven them to be less expensive to maintain than straight-through machines that have vibrating separation decks, return conveyors and multiple eccentric drives. Eventually motors have to be re-wound, and bearings changed; these costs vary greatly with different brands.


Most good vibratory machines will outlive their linings, and that will be the largest repair cost of all, approaching 50% of the cost of a new machine. When getting reline costs, be sure to specify the material you want, such as hot or cold pour polyurethane, neoprene and rubber; and, specify the hardness required. Bowl machines typically have liner life two to four times greater than tub designs; some of that advantage may be lost to higher relining costs. For each of these repair items, get an estimate of the downtime for the entire repair process.


The second priority on my list is how well the machine can run the necessary process. For example, steel media can be used to polish, clean, or lightly debur, but many machines do not perform with steel media. If parts are delicate, subject to deformation or nicking, or if parts are very large or heavy, the machine must able to process those parts without damage. The machinery must meet any special requirement.


It is likely that process requirements, or techniques will change over the life of the machine, which could easily be 20 years. A third priority, then, is that the machine be easily adjustable to accommodate any future process changes.


Many examples come to mind: changing the vibratory frequency and/or amplitude; changing the time cycle; changing from plastic media to heavy ceramic media; changing to steel media from any other; changing from open to closed drain techniques; introducing a more delicate product line, and so on. These changes may require changing the amount of eccentric force, and you want a machine designed to easily add or subtract weights. The process change may require—in bowl or racetrack styles—that you change the amount of weight on either the top or the bottom. You may need to change the lead angle between top and bottom weights. Some bowl machines are very difficult to adjust, even requiring removal of the bowl from the base to access either the top or the bottom weights; other bowl machines make it difficult to determine and accurately change the lead angle. And, some don’t even allow for any change in certain of these features.


Next, consider the basic design features of the equipment you are considering. In tub-style machines, you will find eccentric weights placed under or adjacent to the work chamber, or even above the media level in the work chamber. You may find two or more eccentric shafts, and two or more bearing and weight assemblies along each shaft. The placement of the eccentric shafts will change the center of gravity in the working mass, and this changes the action within the tub. The location of the eccentric shafts and weights not only has process value, it can make access more or less of a problem. In straight-through designs, you may find the center line of the shafts to be non-parallel to that of the tub center line.


In all designs, you will want a drainage system such that compounds are removed frequently, and without accumulation in the process chamber. Generally, it is good to have at least one bottom drain for every ten cubic feet of mass, or one for every four feet of a single pass design. Another desirable feature is a media discharge door that allows for easy removal of the entire mass.


In bowl machines, the elevation of top and bottom weights relative to the elevation of the working mass is very important. The higher the top weights are, the easier it is to drive media up to, and across, the separator screen. And, the higher the top weights are, the more center post pressure that is applied, making it more difficult to treat parts gently.


The lower the bottom weights are, the better the rolling action will be. One very popular bowl design has the top weight at the level of the bottom of the work chamber, and the bottom weights 12 or more inches below that. That design has many process advantages, but results in a machine profile that often requires a work platform for the operator. These are factors in machine design, and you must decide which is most important to you. In any case, access to both top and bottom weights, and easy changes to the weights and the lead angle is high on my priority list.


The power train is the last consideration on my list. You will find vibrating motors, motors with eccentric weights on one or both ends, variable speed motors, variable speed gear boxes, direct drives, u-joint drives and belt drives. There may be one, or more, eccentric shafts connected by u-joints, or belt drives. Each has advantages, and each has its own maintenance considerations. When comparing maintenance costs, find out if standard off-the-shelf motors, bearings, bearing assemblies and other items such as re-winding motors or relining bowls are available from third-party vendors, or do you have to go back to the OEM for these items.


Learn the reasons for these different designs and select equipment that has the design advantages best meeting your needs while giving you the most future flexibility. A checklist for purchasing can be developed. Each item on the list should be given an importance rating, along with the reason why it is important. This will lead to a total score for each machine considered, allowing you to make and document a good selection.

Rectifiers for the Plating Industry
FISCHERSCOPE® XAN® LIQUID ANALYZER
Hitachi High-Tech FT200 series
Reduced Ion Electroless Nickel
In-Place Repairs for Canning Presses
KCH Engineered Systems
Luster-On Products
The Finishing Industry’s Education and Networking Resource
find masking products online
OptiCenter All-in-One OC11
New Acid-Free Bright Nickel Process
Gardner Intelligence
plating and surface finishing additives
PMTS 2025 Register Now!
PF Podcast
Filtration Systems

Related Content

Electroplating

An Overview of Electroless Nickel Plating

By definition, electroless plating is metal deposition by a controlled chemical reaction.

Read More
basics

Preparation for Electroplating

What you should know about cleaning and electrocleaning.

Read More
basics

How to Address Declining Powder Coating Coverage Over Time

Fine particles from reclaim could be to blame for powder coating problems that emerge over time. Avoid problems by keeping hooks clean, maintaining guns and using reclaim powder quickly to avoid accumulation of fines.

Read More
Electroplating

How to Choose Between Sulfate and Chloride-Based Trivalent Chromium

There are several factors to consider when choosing between sulfate and chloride-based baths for trivalent chromium plating. Mark Schario of Columbia Chemical discusses the differences and what platers should keep in mind when evaluating options.

Read More

Read Next

Parts Cleaning

A ‘Clean’ Agenda Offers Unique Presentations in Chicago

The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.   

Read More
sustainability

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Parts Cleaning

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
Fischer measurement technology