Bringing Powder Coating In-House, free download
Published

Where could iron be coming from in our epoxy electrocoat, and what options do we have to fix the problem?

Where could iron be coming from in our epoxy electrocoat, and what options do we have to fix the problem?

Jose Tirado, Consultant, Ti6 Consulting International

Share

Q. We have been having some difficulties with the roughness and appearance of our epoxy electrocoat, and our supplier has told us that we have high iron content in the e-coat bath. As a result, they are asking us to find out where the iron is coming from, replace the bath and then make a new one, which is difficult and expensive for us to do. Do you know where the iron could be coming from, and are there alternative methods to dumping the tank? –S.U.

A. In cathodic electrocoat paint systems, the iron would be deposited onto the grounded parts just like charged electrocoat resins and pigments because iron presents a positive charge in aqueous solutions. High iron levels typically produce ecoat films that are rough or tight and have marginal appearance, as in your case. Additionally, iron-contaminated electrocoat systems provide poor corrosion performance because the iron promotes blister formation and speeds up scribe creep during salt spray exposures. In cathodic acrylic systems, the presence of iron can also affect film performance to UV exposure, producing films with excessive gloss loss, color drift or fading.

Sources of the iron can be multiple. Sometimes the high iron levels come from excessive dissolution of the anodes into the anolyte solution. Tears and holes in the anodes or excessive anolyte sweating cause the iron to migrate from the anolyte solution into the paint bath. High anolyte conductivities, low anolyte pH or low-grade SS anode materials can greatly contribute to this excessive anode dissolution.

In other situations, sources of the iron in the ecoat bath can be fallen parts in the tank, steel blast dust or shot brought in with the raw parts. Also, all piping, tank and accessories in contact with the electrocoat paint must be of acid resistance materials like SS or PVC as they can contribute iron into the e-coat bath.

As your electrocoat supplier indicates, the sources of the iron must be identified and corrected before you can proceed with implementing the next steps. If the sources are not eliminated from the process, the new electrocoat bath will just become contaminated again.

For an epoxy system, once the source has been identified and corrected, you should evaluate your bath to analyze the rate of iron decline and the improvement in appearance or performance under your specific coating rates. If the current rate is acceptable, the situation will continue to improve gradually. If, on the other hand, the rate of improvement is not acceptable to you, then the electrocoat bath must be replaced. There are no other effective or proven methods of eliminating iron from the bath than coating it out or replacing it.

Reusing the old electrocoat bath should also be evaluated if cost is an issue and if the initial iron levels are less than two to three times the permissible iron levels. Small feed rates of the old material under controlled conditions could be incorporated with raw resin and paste feeds. With patience and time, the old material could be reused.

If the iron level in your old bath is too high, then the bath must be discarded according to local governing regulations.

Your Best Finish Starts With Us!
Pretreatment Washer and Finishing Equipment
Gardner Intelligence
Heatmax Heaters ad with immersion heaters
PMTS 2025 Register Now!
plating and surface finishing additives
New Acid-Free Bright Nickel Process
find masking products online
Filtration Systems
Metal Pretreatment Technology
Heatmax Heaters ad with immersion heaters
PF Podcast

Related Content

Hubbard-Hall Acquires BioConversion Technology

The acquisition adds experience and biologics to the AquaPure product line.

Read More
Industry 4.0

Top 5 Areas to Consider Automation of Plating Operations

Automation for finishing operations can lead to improvements in process time, repeatability and consistency of quality. Yet, processes that make sense to explore for these operational efficiencies may not always be readily apparent.  

Read More

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 9th Quarterly Report

The NASF-AESF Foundation Research Board selected a project addressing the problem of PFAS and related chemicals in plating wastewater streams.  This report covers the ninth quarter of work (January-March 2023).  In this report, we describe our work on evaluating the performance of PFAS degradation by electrooxidation using surface fluorinated Ti4O7 anodes in batch mode.

Read More
basics

Zinc Phosphate: Questions and Answers

Our experts share specific questions about zinc phosphate and pretreatment

Read More

Read Next

Parts Cleaning

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
Parts Cleaning

A ‘Clean’ Agenda Offers Unique Presentations in Chicago

The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.   

Read More
Sponsored

Masking Solutions for Medical Applications

According to Custom Fabricating and Supplies, a cleanroom is ideal for converting, die cutting, laminating, slitting, packaging and assembly of medical-grade products.

Read More
Non-Cyanide Silver Plating, AMS 2411J