Changing from Lime To Magnesium Hydroxide
We are considering switching to magnesium hydroxide since jar tests performed by a chemical supplier indicate a 30% reduction in filter press cake at a pH of 8.5. Our flow consists of 2/3 tumbling and 1/3 nickel-chrome plating with a combined flow of 60 gal/min. Is this realistic?
Q. We use a heavy metal precipitation process consisting of sulfuric acid to lower our tumbling wastewater to a pH of 4.0 to break chelating agents, chrome reduction with sulfuric acid and sodium metabisulfite, lime slurry to raise pH to 9.5, addition of flocculant, then clarification. We are considering switching to magnesium hydroxide since jar tests performed by a chemical supplier indicate a 30% reduction in filter press cake at a pH of 8.5. Our flow consists of 2/3 tumbling and 1/3 nickel-chrome plating with a combined flow of 60 gal/min. Is this realistic? J.S.
A. A change from lime to magnesium hydroxide is certainly worth investigating. Its advantages include lower soluble metals, better floc formation, lower solids generation and, generally, higher solids content in the filter press cake. However, magnesium hydroxide has a very slow reaction time, up to 60 minutes, requiring periodic jar tests to determine feed rate. Most metal finishing wastewater treatment systems do not have this amount of time for pH adjustment at design flows, so the magnesium hydroxide slurry needs to be fed as far upstream of pH adjustment as possible, and this may not be feasible.
If you have a sump that collects your acidic tumbling and chrome reduction wastewaters for pumping to pH adjustment, this could be a good location for the magnesium hydroxide and use lime slurry or sodium hydroxide to “top off” your pH control at your pH adjustment tank.
Also, be sure your magnesium hydroxide feed system has a water flush in the feed line that is isolated from the feed tank and will flush the magnesium hydroxide away from the feed tank. Why? Magnesium hydroxide is a slurry that contains chemicals that help maintain the solids in suspension. If these chemicals are diluted too much by flush water back into the feed tank, the solids will be difficult to keep in suspension without constant mixing. Periodic mixing of this slurry throughout the day is also highly recommended.
Based upon your information, your filter press cake is a RCRA-listed hazardous waste (EPA hazardous waste F006) due to the nickel-chrome plating wastewaters, and is expensive to dispose properly. Have you seriously investigated a separate wastewater pretreatment system for the tumbling wastewater, which would very likely not produce a listed RCRA-hazardous waste? Mixing of the tumbling and nickel-chrome wastewaters causes your filter press cake to be hazardous waste.
While tumbling wastewaters are usually very high in solids due to the breakdown of the media, they are typically low in heavy metals (except iron) unless large amounts of stainless steel, brass, or bronze parts are processed. Even here, the metals are in a particulate form and from our experience resist leaching of the acidic extraction fluid when subjected to the Toxicity Characteristic Leaching Procedure. All the tumbling wastewater treatment filter press cakes we have analyzed have been RCRA non-hazardous waste and capable of disposal into a permitted sanitary landfill at significant costs savings as well as reduction in regulatory compliance costs. We recommend that you sample and analyze your tumbling wastewater and compare it against your wastewater discharge permit limitations to determine what level of pretreatment you really need. You may find that this wastewater only needs screening for media recovery, free oil removal and pH adjustment.
Separate treatment also has these advantages: elimination of acid pretreatment of chelating agents likely coming from tumbling, significant reduction in the amount of RCRA-hazardous waste generated, reduced alkali demand for pH control due to elimination of acid pretreatment, and increased recycling of the nickel-chrome wastewater filter press cake because of the removal of the “junk” tumbling solids.
The wastewater from the two treatment trains would then be combined before the sampling point and discharge.
Related Content
NASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters – January – December 2023
This NASF-AESF Foundation research project report covers quarterly reporting for the year 2023 at the University of Illinois at Chicago. The objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater. Discussed here are the oxidation of PFOA with three different catalysts, development of a method for detecting PFAS, as well as work on 6:2-fluorotelomersulfonic acid (6:2 FTS) and electrodeposited bismuth/tin oxide catalysts.
Read MoreZinc Phosphate: Questions and Answers
Our experts share specific questions about zinc phosphate and pretreatment
Read MoreNASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters - April 2022-March 2023
This NASF-AESF Foundation research project report covers project work from April 2022 to March 2023 at the University of Illinois at Chicago. The overall objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater. Initial results for the oxidation of PFOA with three different catalysts are discussed.
Read MoreNASF/AESF Foundation Research Project #121: Development of a Sustainability Metrics System and a Technical Solution Method for Sustainable Metal Finishing - 15th Quarterly Report
This NASF-AESF Foundation research project report covers the twelfth quarter of project work (October-December 2023) at Wayne State University in Detroit. In this period, our main effort focused on the development of a set of Digital Twins (DTs) using the Physics-Informed Neural Network (PINN) technology with application on parts rinsing simulation.
Read MoreRead Next
A ‘Clean’ Agenda Offers Unique Presentations in Chicago
The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.
Read MoreEpisode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions
Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.
Read MoreEducation Bringing Cleaning to Machining
Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.
Read More