Clean Wastewater Attacking Zinc Plate
We use ion exchange treatment for wastewater from our nickel, hexavalent chrome and zinc plating rinses. What kind of characterization should we do to identify the pollutants that are affecting our products, and what steps are needed to reuse this water?
Q. We use ion exchange treatment for wastewater from our nickel, hexavalent chrome and zinc plating rinses. We have been trying to reuse this “clean water” but have found that it is attacking the finish from our bright zinc plating. What kind of characterization should we do to identify the pollutants that are affecting our products, and what steps are needed to reuse this water? H.S.
A. The very likely issue is not that there is some kind of pollutant in your “clean water” that is causing the problem but that your ion exchange effluent is too clean and is very “aggressive” towards metals. Since your ion exchange system has essentially removed all ions, including metals, from the wastewater, the wastewater wants to restore its ion balance and will attack metals to replenish its ions. Also, if you check the ion exchange effluent’s pH, you will likely find it below 5 and perhaps as low as 3. If you are using this water in your nickel and chrome plating rinses and not experiencing the same issue, the reason is that these metals are able to resist the water’s aggressiveness during the relatively short rinsing time.
Here are several alternatives for you to consider:
- Do not use this de-ionized water for zinc rinsing,
- Supplement potable water for a portion of the rinse water flow, thereby reducing the rinse water’s aggressiveness. Once you have established the desirable ratio of potable water to deionized water, you can use a conductivity sensor and controller that adds potable water when the water’s conductivity (a gross measure of the water’s dissolved solids) reaches a low set point.
- Adjust the deionized water’s pH with sodium hydroxide to maintain a pH of 7.0–7.5. (We like to use 10–25 percent sodium hydroxide because of its rapid reaction rate and low freezing temperature.) Be careful not to raise pH above 8, since this may tend to dull your desired bright zinc finish.
Related Content
-
NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 7th Quarterly Report
The NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS and related chemicals in plating wastewater streams, studying PFAS destruction via electrooxidation and electrocoagulation. Our last report described the results from experiments of EO with a Magnéli phase Ti4O7 anode on the degradation of eight perfluoroalkyl acids (PFAAs). In this seven quarter report, we describe work to further explore how the degradation of different PFAAs are related to their molecular structures.
-
NASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters - April 2022-March 2023
This NASF-AESF Foundation research project report covers project work from April 2022 to March 2023 at the University of Illinois at Chicago. The overall objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater. Initial results for the oxidation of PFOA with three different catalysts are discussed.
-
NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 12th Quarterly Report
This NASF-AESF Foundation research project report covers the 12th quarter of project work (October – December 2023) at the University of Georgia. In our previous report, we described our work on performance and effect of surface fluorinated Ti4O7 anodes on PFAS degradation in reactive electrochemical membrane (REM) mode. This quarter, our experiments involved utilizing porous Ti4O7 plates serving both as anodes and membranes. Tests compared pristine and F-18.6 Ti4O7 anodes at current densities of 10 mA/cm2 and 40 mA/cm2. This 12th quarterly report discusses the mechanisms of the effects on EO performance by anode surface fluorination.