Koch Finishing Systems
Published

Moly Removal From Wastewater

Do you have any more insight on this pesky issue? Since the permit limitation for molybdenum has significantly changed, the city is giving us some time to address the issue before they start issuing notices of violation.

Share

Q. We are a metal finishing job shop with a wide variety of processes as well as a wastewater pretreatment system. Over recent years, our compliance with our wastewater discharge permit has been excellent—until recently. When our new permit was issued several months ago, we noticed that its molybdenum limit had been dramatically reduced from 2.2–0.5 mg/liter. We then went back to our wastewater monitoring reports to the city to see how our historical molybdenum compared against the new limit. We found that up until a year ago, the molybdenum concentration in the wastewater discharge was consistently below 0.5 mg/liter. However, during the past year, we found that a number of our samples were over the new limit but under the old limit. Then, just last week, the city informed us that the molybdenum concentration in samples they took last month was over the new limit, averaging about 1.5 mg/liter. After carefully reviewing our material safety data sheets, we found that one of our new trivalent chromates does contain a molybdenum compound. As an experiment, we did not run that chromate bath for two days and sampled our wastewater effluent on the second day. The result was 0.3 mg/liter. We then ran the bath for two days and sampled on the second day. The result was 1.3 mg/liter. So it looks like we have found the source of the molybdenum. We cannot change this chromate since it is mandated by one of our key customers and none of the alternatives we have tested perform as well.

In discussing the possible solution with our wastewater chemical supplier, he says that he, nor anyone in his company, has ever encountered this issue and is unsure how to proceed. One possible option they think might work is to add a sulfide precipitant after our clarifier and install a new sand filter. Needless to say, this is quite expensive, and we do not want to commit this kind of capital into something that “might work.” Furthermore, we are not sure that the zinc plating work that uses this chromate can even support this additional expenditure. We have conducted our own search for treatment of molybdenum in metal finishing wastewater and have found very little.

Do you have any more insight on this pesky issue? Since the permit limitation for molybdenum has significantly changed, the city is giving us some time to address the issue before they start issuing notices of violation. R.T.

A. I have been working with metal finishing wastewater for more than 25 years, and this, too, is the first time that I have encountered this issue. Two of our clients do have molybdenum in their wastewater discharge permits, but their concentrations are well above your new limit and pose no compliance issue.

Unfortunately, as you discovered, there is very little information out in the public domain regarding molybdenum (aka moly) removal from wastewater, particularly metal finishing wastewater. The reasons are two fold. First, molybdenum is regulated mainly through local limits and very few cities or sewer districts regulate molybdenum. The likely driver for your city to reduce your moly limitation is the application of their wastewater treatment solids onto land; while moly is a plant trace nutrient, too much moly can be detrimental to plants. Second, because of the pressures to eliminate or reduce hexavalent chrome compounds in metal finishing processes, molybdate (MoO4-2) compounds are being used to replace hexavalent chromates as you have discovered.

Also, I am not aware of any solubility versus pH curves for moly like we have for chrome, copper, zinc, nickel, etc. This makes me think that one needs to precipitate out a moly compound rather than a moly ion.

Based upon my research, I have found the following treatment schemes that claim to remove moly: 

 

  • Electrocoagulation, which uses an electrical current to dissolve a sacrificial anode of iron or aluminum and thereby introduces these positive ions into the wastestream. At the same time, gases formed by hydrolysis form very fine bubble that attach to the coagulated contaminants and carry them to the surface by flotation where they are removed.
  • Addition of calcium chloride at several times its theoretical dosage and a very long (up to 12 hours) processing time at a pH of 7.5.
  • Reduction with sodium metabisulfite and precipitate at a pH <4.0.
  • Reduction with sodium metabisulfite and precipitate at a pH <6.0.
  • Reduction with sodium metabisulfite at a low pH, addition of polythiocarbamate (an organic sulfide), and precipitate at pH of 9.0.
  • Lower pH to 4 then add a ferrous iron salt; raise pH to between 7.0 and 9.0 then add a sulfide precipitant; filtration after the addition of the ferrous iron AND sulfide precipitant may be necessary.
  • Ion exchange.
  • Reverse osmosis.

 

As you will note, a common theme in the literature is that the molybdate ion needs to be reduced, in a similar fashion as hexavalent chromate needs to be reduced, in order to prepare it for precipitation. Also, several references noted that too vigorous mixing tear the molybdate precipitate apart so that it would be too small for settling or filtration.

Given that you have isolated the problem to one of your chromate baths, why not treat the problem at the source instead of at your main wastewater treatment system? If you find a chemical precipitation procedure that works, consider installing a batch treatment system for the offending chromate process. This system could consist of a holding tank, treatment tank and very small filter press. However, if the process time becomes too excessive, the size of the holding and treatment tanks may become too large and costly.

Another option to consider is to “close loop” the chromate rinsewaters. While reverse osmosis can remove molybdate, it generates a reject stream of between 5–15 % of its flow, and this reject stream still has to be treated.

For a “closed loop” option, ion exchange could be a feasible option. Strong base anion resins are capable of removing the molybdate ion. In this alternative, the rinsewaters would be pumped through a carbon filter in order to protect the ion exchange resin from organic fouling, then the ion exchange columns and then back to the rinse tanks. Periodically, the ion exchange resin will need to be regenerated or disposed. Regeneration on your site is not an option since you still would need to treat for molybdenum. Our preference would be to find a supplier that can provide exchangeable resin columns that are regenerated off-site. If this proves to be too expensive or unavailable, another option is to purchase bagged resin to be used to replace the exhausted resin. The exhausted resin, likely to be RCRA hazardous waste due to the presence of chrome, can either be placed with your filter press cake if it, too, is a RCRA hazardous waste or disposed separately. The advantages of this option are its low startup capital costs, high degree of confidence that it will work, and very high rinsewater quality. Its disadvantages include relatively high costs of resin regeneration or purchase/disposal and that the waste chromate solution will need to be disposed as a hazardous waste off-site.

Let’s take advantage of our knowledge and experience Product Finishing readers. If you know of a success story for the consistent removal of molybdenum from metal finishing or similar wastewaters, I invite you to share your experience by responding to www.pfonline.com/environmental/clinics.html.
 

 

Your Best Finish Starts With Us!
FABTECH 2024
find masking products online
Gardner Intelligence
Heatmax Heaters ad with immersion heaters
New Acid-Free Bright Nickel Process
Parts Cleaning Conference
Pretreatment Washer and Finishing Equipment
Fischer Technology, Inc.
Heatmax Heaters ad with immersion heaters
Metal Pretreatment Technology
Mocap Masking Caps Plugs Tapes
PF Podcast
Koch Finishing Systems
The Finishing Industry’s Education and Networking Resource
Filtration

Related Content

nasf

EPA Readying Fall Nationwide PFAS Survey of Metal Finishing Industry to Inform New Water Discharge Rule

NASF continues discussions with US EPA on the agency’s plans for a nationwide survey of the metal finishing industry on its use of PFAS. NASF plans to review the draft survey and provide feedback to the agency prior to its distribution. Surveys will likely go to a wide range of job shop and captive operations and are scheduled to be sent out in the fall.

Read More

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 7th Quarterly Report

The NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS and related chemicals in plating wastewater streams, studying PFAS destruction via electrooxidation and electrocoagulation.  Our last report described the results from experiments of EO with a Magnéli phase Ti4O7 anode on the degradation of eight perfluoroalkyl acids (PFAAs).  In this seven quarter report, we describe work to further explore how the degradation of different PFAAs are related to their molecular structures.

Read More
nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 6th Quarterly Report

The NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS and related chemicals in plating wastewater streams, studying PFAS destruction via electrooxidation and electrocoagulation.  This sixth quarter report covers the continued assessment of eight perfluoroalkyl acids PFAAs most commonly found in wastewaters, by electro-oxidation with a Magnéli phase Ti4O7 anode across a range of anodic potentials in solutions, exploring the reaction mechanisms.  To summarize, the PFAAs start to exhibit degradation behavior when the anodic potential reaches a level where water oxidation occurs, suggesting that the hydroxyl free radicals generated via water oxidation play a role in PFAA degradation.

Read More

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 5th Quarterly Report

This paper covers a research grant at the University of Georgia - Griffin on developing electrochemical approaches to remove PFASs present in plating wastewaters, under the direction of Professor Qingguo (Jack) Huang.  This fifth quarter report assessed eight PFAAs most commonly found in wastewaters, by electro-oxidation with a Ti4O7 anode across a range of anodic potentials in solutions of different compositions and at varying operating conditions.  

Read More

Read Next

automotive

The 2024 Ford Mustang: All the Colors Available

Although Chevrolet has announced the end of the Camaro and Dodge is offering “Last Call” editions of the Charger and Challenger, the Ford Mustang is launching to its seventh generation.

Read More
Powder Coating

Powder Coating 4.0: Smarter, Faster, More Efficient and Connected

New tools reduce cost and waste, lower manufacturing footprint of powder coating operations.

Read More
sustainability

Episode 42: An Interview with Robin Deal, Hubbard-Hall

Hubbard-Hall wastewater treatment specialist Robin Deal discusses the latest trends in wastewater management. 

Read More
Bringing Powder Coating In-House, free download