Parts Cleaning Conference
Published

Non-hazardous Waste Becomes Hazardous Revisited

Question: Steve, your column in the September 2005 issue, non-hazardous waste has become hazardous, in which you describe how changes in process and wastewater pretreatment chemistry can have a profound impact upon the filter press cake’s status as a RCRA hazardous or non-hazardous waste reminded me of a situation we had about 10 years ago.

Share

Question:

Steve, your column in the September 2005 issue, non-hazardous waste has become hazardous, in which you describe how changes in process and wastewater pretreatment chemistry can have a profound impact upon the filter press cake’s status as a RCRA hazardous or non-hazardous waste reminded me of a situation we had about 10 years ago. At the time we had a captive metal finishing process and wastewater pretreatment system which had been producing a filter press cake that was non-hazardous. In fact, we tested it about every six months to make sure it remained non-hazardous. Out of the blue, the independent lab we used reported that chromium and lead were above their respective Toxicity Characteristic Leaching Procedure (TCLP) thresholds of 5.0 mg/liter. Needless to say we were in a panic and several loads had to be disposed as RCRA hazardous waste.

Fortunately, we had been using the lab for a number of years and had them go back to see if anything had changed. And, indeed, something had. For all the previous samples, the laboratory used TCLP extraction fluid #1 while for the filter press cake sample that flunked TCLP, they used extraction fluid #2. We then received a good education by the lab on the TCLP procedure (EPA test method 1311, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; EPA publication SW846).

When the filter press cake sample arrives at the lab, a portion is mixed with distilled/deionized water, and the pH of this slurry is checked. If the pH is less than 5.0, then the lab uses extraction fluid #1 which has a pH of 4.93.

If the pH is above 5.0, the lab takes another portion of the sample, mixes it with one normal (N) solution of hydrochloric acid (HCl), heats it up, allows it to cool, and again checks pH. If this pH is less than 5.0, the lab uses extraction fluid #1, but if the pH is greater than 5.0, the lab uses extraction fluid #2 which has a pH of 2.88, basically 100 times more acidic than extraction fluid #1. As expected, our filter press cake when mixed with the deionized water always had a pH above 5.0. In the past, after the acidification with hydrochloric acid, the pH would typically be between 4.5 and 4.9. Now, the sample exhibited a pH of 6.0 after acidification. What this told us was that, apparently, the alkalinity of our filter press cake had increased.

It did not take long to discover the reason. A few months before, our wastewater treatment operator found that by increasing the pH setpoints in our wastewater treatment system, the effluent became less cloudy and more clear although we had no compliance problems with the slightly “cloudy” effluent. We then restored the pH setpoints to their original values, waited several days to get the “old” sludge out of the system, and sampled filter press cake. Sure enough, its alkalinity had dropped so that the lab could use extraction fluid #1. We waited another week to make sure the process stabilized before taking another sample; it qualified for extraction fluid #1, and we had the TCLP performed on the sample, which passed just as in the past. Apparently, the increase in the filter press cake’s alkalinity was insufficient to overcome the more aggressive extraction fluid #2.

Feel free to pass this along to your readers. A.W.

Answer:

Thanks, A.W., and I thought I was the only one to experience this problem. Because of this issue, whenever we have TCLP performed on a sample, we request the lab to also report initial pH, pH after acidification with hydrochloric acid, extraction fluid used, and TCLP extraction pH. This has solved some headaches as wastes change, and we become detectives to find out why.

 

Cleaning Technologies Group
Precision Cleaning Solvents
high-performance systems for efficient parts cleaning
Echoflex modular ultrasonic cleaning machines
Parts Cleaning Conference
Heatmax Heaters ad with immersion heaters
Parts Cleaning Conference
Fischer Technology, Inc.
Filtration
Koch Finishing Systems
More blasting. Less part handling.
Gardner Intelligence

Related Content

nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 5th Quarterly Report

This paper covers a research grant at the University of Georgia - Griffin on developing electrochemical approaches to remove PFASs present in plating wastewaters, under the direction of Professor Qingguo (Jack) Huang.  This fifth quarter report assessed eight PFAAs most commonly found in wastewaters, by electro-oxidation with a Ti4O7 anode across a range of anodic potentials in solutions of different compositions and at varying operating conditions.  

Read More
nasf

NASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters – January – December 2023

This NASF-AESF Foundation research project report covers quarterly reporting for the year 2023 at the University of Illinois at Chicago.  The objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater.  Discussed here are the oxidation of PFOA with three different catalysts, development of a method for detecting PFAS, as well as work on 6:2-fluorotelomersulfonic acid (6:2 FTS) and electrodeposited bismuth/tin oxide catalysts.

Read More

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 12th Quarterly Report

This NASF-AESF Foundation research project report covers the 12th quarter of project work (October – December 2023) at the University of Georgia. In our previous report, we described our work on performance and effect of surface fluorinated Ti4O7 anodes on PFAS degradation in reactive electrochemical membrane (REM) mode. This quarter, our experiments involved utilizing porous Ti4O7 plates serving both as anodes and membranes. Tests compared pristine and F-18.6 Ti4O7 anodes at current densities of 10 mA/cm2 and 40 mA/cm2. This 12th quarterly report discusses the mechanisms of the effects on EO performance by anode surface fluorination.  

Read More
regulation

EPA Readying Fall Nationwide PFAS Survey of Metal Finishing Industry to Inform New Water Discharge Rule

NASF continues discussions with US EPA on the agency’s plans for a nationwide survey of the metal finishing industry on its use of PFAS. NASF plans to review the draft survey and provide feedback to the agency prior to its distribution. Surveys will likely go to a wide range of job shop and captive operations and are scheduled to be sent out in the fall.

Read More

Read Next

Powder Coating

Powder Coating 4.0: Smarter, Faster, More Efficient and Connected

New tools reduce cost and waste, lower manufacturing footprint of powder coating operations.

Read More
automotive

The 2024 Ford Mustang: All the Colors Available

Although Chevrolet has announced the end of the Camaro and Dodge is offering “Last Call” editions of the Charger and Challenger, the Ford Mustang is launching to its seventh generation.

Read More
Pollution Control

Episode 42: An Interview with Robin Deal, Hubbard-Hall

Hubbard-Hall wastewater treatment specialist Robin Deal discusses the latest trends in wastewater management. 

Read More
Precision cleaning solvents