ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
Published

Selecting a Touch-Up Gun for an Automatic Finishing System

Liquid coating expert Steve Romer recommends first looking at how the automatic system is being used.

Steven Romer, Senior Systems Application Engineer, Sames Kremlin

Share

Q: What is the best way to select a touch-up gun for an automatic liquid finishing system?

A: Over the years, I have been asked this question many times. The answer is not as clear-cut as one might think. The biggest consideration should be how the current automatic system is being used.

For example, say you have an aluminum extrusion finishing system with rotatory bell atomizers. If you run the voltage very high, there will be light areas in any Faraday Cage that are present. However, if you were to turn the voltage down a little, those Faraday Cage areas might be covered. Therefore, combining proper bell triggering and flow control, the overall transfer rates would remain high and the touch-up requirements would be dramatically reduced at the same time. Extrusions have a lot of edges and recesses, so dialing in the bell system will minimize touch-up requirements.

I recently visited a plant that was running bell atomizers at a very high voltage, and all the reverse Faraday Cage areas were getting too much paint but the recesses were getting very poor coverage. This shop was using electrostatic hand guns for the massive touch-up requirements. In fact, the touch up was at least 30 percent of the applied coating.

By tuning the automatic bell application system to reduce the electrostatic voltage and increasing the shaping air, the recesses were almost covered and the exposed edges received the correct film builds. The required touch up was limited to deep in the recess Faraday Cage areas. In this case, a very lightweight, non-electrostatic manual gun would work the best.

As explained in this example, the first step in selecting a touch-up gun is to really look at the automatic system and make sure its settings are appropriately tuned in for the parts being finished. Many times, different parts require different settings, so a recipe-based system that changes the various fluid and application settings as appropriate for the parts being finished will allow for a much better overall finishing system and dramatically reduced touch-up gun requirements.

I often use the term application transfer efficiency (ATE) when discussing finishing systems. A system’s transfer efficiency (TE) is often talked about, but ATE combines TE with the required film builds. If the requirement is 1 mil, then any film build over 1 mil is waste. So, even if the application produced 100 percent TE, but the film build was 1.5 mils, the ATE  would be 50 percent. This especially applies to automatic paint systems. Last year, we tuned a paint system to bring film builds down to the actual required levels. This not only produced paint savings of 17 percent, but on top of that, no rework was required, so the ATE dramatically improved as well.

So tuning automatic application systems (and really even manual systems) to provide uniform film builds allows us to select the right touch-up gun for the end user. I recently visited another plant and confirmed that the heavy electrostatic gun currently being used was right for how they were running their automatic system, but if we tuned the existing system (or maybe upgraded to a bell application system to provide better film-build control), they could change to a more lightweight air spray hand gun and cover the very slight Faraday Cage areas and save a lot of paint. In this case, the overall savings will be around 30 percent, and with $9 million of coatings being used at this facility, a 30 percent overall paint savings could generate a savings of about $3 million.

It is not easy to select the right touch-up tool. The real trick is to optimize the automatic system for the required film builds and coverage, then select the right touch-up tool for the remaining areas. It’s important to remember that touch-up is just a part of a finishing system and find a solution that addresses the entire operation.

Free guide on metal fabrication paint finishing
ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
Precision gear pumps
Your Best Finish Starts With Us!
The Finishing Industry’s Education and Networking Resource
Mocap Masking Caps Plugs Tapes
Pretreatment Washer and Finishing Equipment
New Acid-Free Bright Nickel Process
PF Podcast
More blasting. Less part handling.
Fischer Technology, Inc.
FABTECH 2024

Related Content

Powder Coating

Calculating the Cost of Powder Coating

How can you calculate the cost of powder coating a component if you only know its surface area? Powder coating expert Rodger Talbert has the answer.

Read More
Liquid Coating

Improving Transfer Efficiencies in Coating Operations

There are many methods for addressing electrostatic grounding in metal painting processes, and Tim Ulshafer from Mueller Electric says the best method for your process is a simple and worthwhile exercise.

Read More

Polishing vs. Buffing: What's the Difference?

Is polishing the same as buffing? Mechanical finishing expert, Pat Wenino, explains the differences between the two processes.

Read More

Zinc Phosphate: Questions and Answers

Our experts share specific questions about zinc phosphate and pretreatment

Read More

Read Next

Powder Coating

Powder Coating 4.0: Smarter, Faster, More Efficient and Connected

New tools reduce cost and waste, lower manufacturing footprint of powder coating operations.

Read More
sustainability

Episode 42: An Interview with Robin Deal, Hubbard-Hall

Hubbard-Hall wastewater treatment specialist Robin Deal discusses the latest trends in wastewater management. 

Read More
automotive

The 2024 Ford Mustang: All the Colors Available

Although Chevrolet has announced the end of the Camaro and Dodge is offering “Last Call” editions of the Charger and Challenger, the Ford Mustang is launching to its seventh generation.

Read More
Precision gear pumps