Bringing Powder Coating In-House, free download
Published

Waste Treatment for Paint Stripping

How can we remove paint sludge and color and neutralize the pH from paint stripping acid before discharging waste to a storm drain?

Share

Q. We will be using concentrated sulfuric acid to strip e-coatings from reject metal parts. The parts will be immersed into the acid solution, and the stripped coating will migrate into that solution. After a day, the acid will be spent because it is full of paint sludge, and we will need to replace it with new acid. Unfortunately, our only outlet for discharge of this waste is to a nearby storm drain, and we know that we will need to remove the paint sludge and color and to neutralize the pH before discharge. Can you advise? T.T.

A. You present a very challenging problem. I will give you my thoughts, and I invite our readers to submit their suggestions as well.

First, I urge you to look into disposing of this waste material as a hazardous waste, either in 55-gal drums or by collecting and storing in a bulk tank and disposing via bulk tanker truck, depending upon the volume. If you decide to store this corrosive hazardous waste in a bulk tank, the tank system needs to comply with U.S. EPA hazardous waste regulations under 40CFR262, Subpart C, and 40CFR265, Subpart J (with a few exceptions), as well as your state’s regulations. (Go to epa.gov/waste/inforesources/pubs/training/tanks05.pdf for further guidance.) As you will see below, treating this waste material will be extremely challenging and costly, and highly regulatory.

Because you propose to discharge to a storm drain that is connected to surface water, you will be required to apply and obtain a direct discharge permit (aka NPDES permit) either from your state or from your U.S. EPA region if your state does not have an approved NPDES program. 

Assuming that your electro-coating process also includes a phosphate washer pretreatment system, the wastewater discharge is regulated under the Metal Finishing Categorical Standards – New Source Performance Standards – 40CFR433.16. However, for a direct discharge, it is very likely that limits for the heavy metals, total toxic organics, oil and grease, and total suspended solids will be lower due to local water quality stream standards. Also, there will likely be other local water quality standards for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), phosphorus, nitrogen, color (as you mentioned), and aquatic toxicity through bio-assay testing. We strongly recommend that as part of your evaluation process to decide whether to dispose off-site or treat on-site that you discuss your proposed discharge with your direct discharge permit writer to determine exactly what will be your permit limits. Our experience has been that a direct discharge can meet the numerical limits for all of the about pollutants but still fail aquatic toxicity, which will require you to even more aggressively treat this waste stream.

Because of the volumes and the high level of treatment that is likely required, we recommend a batch treatment system consisting of holding tank, treatment tank with mixer, filter press, final holding tank, and air-operated diaphragm transfer pumps constructed of thermoplastic bodies with Teflon diaphragms, seals and checkballs.

In setting up your wastewater treatment scheme, we recommend that you work with an experienced water chemistry sales rep who is able and willing to perform jar testing to determine the most effective treatment in terms of meeting your permit limits and costs. Keeping this in mind, we will provide our thoughts.

After the waste stream is pumped into the treatment tank, caustic (sodium hydroxide) is metered into the tank to raise pH, likely in the range of 8 – 8.5. (The typical upper pH limit for direct discharges is 9.) This could be done automatically with a pH sensor and controller or manually with a portable pH meter after several titrations to determine caustic dosage. We prefer using 12.5 or 25 percent caustic since it reacts quicker and makes it easier to control pH as compared with 50 percent. Also, 50 percent caustic gets slushy when its temperature falls in the mid-60°F range and freezes at about 53°F, while the lower caustic concentrations “freeze” around 5–10°F.

After adjusting for pH, you will likely need a paint de-tackifier since, during the stripping process, some of the resins were solubilized, causing the coating to soften.

This is where a water chemistry sales rep can be quite valuable. At this point, we need to coagulate and flocculate the solids so they can be separated from the water. This may require the addition of a coagulant and/or polymer to make this happen.

Once the solids in the wastewater have been coagulated and flocculated (we like to have solids the size of small curd cottage cheese), it is ready for separation by a plate and frame filter press. One of the questions that cannot be answered without pilot testing is whether or not the filter press needs to be pre-coated with diatomaceous earth (DE) or perlite, as well as the need for continuous body feed into the filter press since the coating solids could plug the filter press, resulting in very long filtration runs at low flows, wet and sloppy filter press cake, and high maintenance to keep filter press cloths clean.

Initially, we start up the press at a fairly low feed pressure (around 30 psig) and recirculate the filter press’s discharging water (filtrate) back to the treatment tank until it clears, when it is sent to the final holding tank. As the feed pump slows down, we typically increase air pressure at 20-psig intervals until around 90 psig. When the pump strokes are about 30 sec apart, it is time to shut down the feed pump, blow down the filter press with compressed air, and open the filter press and remove solids.

To remove color and soluble organics (these are measured by BOD5 and COD), we will need to use activated carbon. There are many types of activated carbon, so again, an experienced water quality sales rep can be of great value to determine the best. There are two ways to use activated carbon. First, we can add after coagulation and flocculation in the treatment tank and remove with the filter press. Second, we can recirculate the wastewater in the final holding tank through dual-activated carbon columns (one operating, one standby) until sufficient color and soluble organics are removed. When spent, the activated carbon is removed and disposed of, and then new carbon is placed into the column. Some have found that the life of the activated carbon can be extended by injecting a small amount of hydrogen peroxide (H2O2) solution into the activated column’s feed line; this oxidizer helps break down the color and soluble organics as well as supplies oxygen to bacteria that also break down soluble organics.

In addition to likely very strict limits, direct discharge permits will have numerous other conditions such as sampling frequency, verifiable daily record keeping, instrumentation calibration record keeping and periodic reporting, and some states require a “licensed operator of record.”

As you can see, for a fairly small wastewater direct discharge, costs can become prohibitive, hence, we urge you to consider off-site disposal. 

Your Best Finish Starts With Us!
The Finishing Industry’s Education and Networking Resource
Mocap Masking Caps Plugs Tapes
More blasting. Less part handling.
Heatmax Heaters ad with immersion heaters
FABTECH 2024
Heatmax Heaters ad with immersion heaters
Filtration
PF Podcast
Gardner Intelligence
find masking products online
Fischer Technology, Inc.
Pretreatment Washer and Finishing Equipment
Koch Finishing Systems
Metal Pretreatment Technology
New Acid-Free Bright Nickel Process

Related Content

regulation

EPA Readying Fall Nationwide PFAS Survey of Metal Finishing Industry to Inform New Water Discharge Rule

NASF continues discussions with US EPA on the agency’s plans for a nationwide survey of the metal finishing industry on its use of PFAS. NASF plans to review the draft survey and provide feedback to the agency prior to its distribution. Surveys will likely go to a wide range of job shop and captive operations and are scheduled to be sent out in the fall.

Read More

Explore Cleaning Chemistry, Metal Finishing Applications and Wastewater Treatment Solutions

Hubbard-Hall Celebrating 175 years of excellence, Hubbard-Hall presents chemistry and equipment.

Read More
nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 7th Quarterly Report

The NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS and related chemicals in plating wastewater streams, studying PFAS destruction via electrooxidation and electrocoagulation.  Our last report described the results from experiments of EO with a Magnéli phase Ti4O7 anode on the degradation of eight perfluoroalkyl acids (PFAAs).  In this seven quarter report, we describe work to further explore how the degradation of different PFAAs are related to their molecular structures.

Read More
Parts Cleaning

Zinc Phosphate: Questions and Answers

Our experts share specific questions about zinc phosphate and pretreatment

Read More

Read Next

Electroplating

Episode 42: An Interview with Robin Deal, Hubbard-Hall

Hubbard-Hall wastewater treatment specialist Robin Deal discusses the latest trends in wastewater management. 

Read More
Powder Coating

Powder Coating 4.0: Smarter, Faster, More Efficient and Connected

New tools reduce cost and waste, lower manufacturing footprint of powder coating operations.

Read More
automotive

The 2024 Ford Mustang: All the Colors Available

Although Chevrolet has announced the end of the Camaro and Dodge is offering “Last Call” editions of the Charger and Challenger, the Ford Mustang is launching to its seventh generation.

Read More
Koch Finishing Systems