Search Results
Showing 61 – 70 of 123 resultsHard chromium replacements have been actively sought for decades. In this, the Final Report for the AESF Foundation’s first Research Project since the formation of the NASF, the authors present the results of their extensive research into novel plating processes.
EPA’s expanded powers to regulate a wider universe of substances as hazardous air pollutants.
Due to their desire to reduce chromium content of their parts, a number of our customers are asking us to investigate zinc alloy plating of their parts.
Lessons from the stewards of surface finishing.
Many industrial/technical journals consist of a well-rounded mixture of technical papers, practical articles about technology and how-to-do-it features, including this one, Products Finishing. In its decades of publication, the AESF/NASF journal, Plating & Surface Finishing also endeavored to meet this need. Among the many features were those of the columnists, recognized experts who had expertise in certain segments of the surface finishing industry. This article contains a sampling of columns published in P&SF over the years, which still retain information of importance even today.
Electrodeposited nanocrystalline cobalt-phosphorus (nCoP) has emerged as a viable environmental alternative to hard chromium coatings for both line-of-sight (LOS) and non-line-of-sight (NLOS) applications. The coatings’ material properties revealed that nCoP has high hardness, enhanced ductility, lower wear rates, superior corrosion resistance and no issues with hydrogen embrittlement after baking.
Products Finishing offers a look back at some of the most noteworthy finishing industry stories from 2021.
BİSAN and Interpon work together to develop new and customized colors to help satisfy a global boom
The United States Environmental Protection Agency (EPA) is taking the first step toward developing new air emissions standards for plating and polishing facilities.
A novel hexavalent chromate-free conversion coating was developed to improve anti-corrosion and adhesive-bonding characteristics of the magnesium alloys and zinc-nickel (Zn-Ni) plated steel substrates. The corrosion behavior of the coated and uncoated alloys was investigated by neutral salt fog (NSF) and electrochemical corrosion tests. Surface wettability of the pretreated substrates was investigated by static contact angle measurements. Wet-tape adhesion tests verified that there is strong adhesion between the primer and the chem film-treated substrates. The morphology and composition of the coated surfaces were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) methods. This trivalent chromium-based surface treatment is a potential hexavalent chromate conversion coating replacement for magnesium alloys and Zn-Ni plated steel.