Parts Cleaning Workshop at PMTS 2025
Published

Aluminum Cleaning

Can you provide me with an article or information that goes into depth about how to clean different grades of aluminum?

Share

Q. I am a process engineer who is new to precision cleaning. Can you provide me with an article or information that goes into depth about how to clean different grades of aluminum? I understand there are many different factors that come into play, like type of contamination or cleanliness grade, but I’m interested in how the different grades of aluminum affect the cleaning process. –J.R.

A. You have touched on an important point: The cleaning process needs to be tailored to both the base materials and the type of soils being removed in order to be effective. A deep-drawing compound will have a different chemistry than a machining coolant. Similarly, a mild steel will present different cleaning challenges than an aluminum alloy.

Wrought and cast aluminum alloys are broken into families based on their primary alloying element(s). The wrought designations are four digit numbers with the first digit (1-8) signifying the specific group to which the alloy belongs. The Aluminum Association is responsible for the assignment of the alloy within the general family. A quick summary of those alloy designations are as follows:

•  1000 series – This is essentially unalloyed aluminum containing 99 percent aluminum with minor amounts of iron and/or silicon.

•  2000 series – The primary alloying element is copper, which allows for significant precipitation hardening with the correct heat treatment.

•  3000 series – This group can be work-hardened and has manganese as its primary alloying element.

•  4000 series – This group is unique in that it is alloyed with silicon that significantly reduces the melting range, making its primary use for brazing other aluminum alloys.

•  5000 series – This group uses magnesium as the primary alloying element and is work-hardenable.

•  6000 series – There are two elements that characterize this group: silicon and magnesium. This combination, along with the proper heat treatment, makes this alloy precipitation-hardening.

•  7000 series – This group is also precipitation-hardening and its primary alloying element is zinc

•  8000 series – This group is not as clearly defined and contains numerous alloys with iron and others with lithium.

The above summary is useful to distinguish the varied types of aluminum materials and forms, however, there are not that many differences in the types of cleaning methods for each of them. In general, most metal cleaning starts with a degreasing process, otherwise any subsequent processing (phosphating, etching, etc.) will be ineffective or uneven. In cleaning the aluminum, you could generally go down two paths: solvent or aqueous methods. Again, the type of lubricant and post-process applications will dictate the specific cleaning process.

If heavy lubricants are present, from a deep-drawing operation, for instance, solvent cleaners may offer a better chance at effective removal. If lighter lubricants or coolants are present, aqueous cleaning may be a more effective means. In general, with aqueous cleaning of aluminum, you will need to utilize either a light-duty, mildly alkaline cleaner (pH ~7-9), or a higher-pH cleaner (~10-12) formulated with silicates (usually sodium metasilicate). 

Following degreasing, there may be a need to etch the aluminum if it is to be plated, to provide a matte finish or simply to reestablish a uniform oxide thickness. In this-case, high-pH, uninhibited alkaline etchants will be effective at accomplishing this. It is common for aluminum to develop a smutted surface as a result of dissolution from the high-pH etchant solution without some of the alloying elements in it also dissolving. In this case, the category of aluminum alloy can have some effect on the amount and tenacity of the residual smut. For instance, the low number of or no alloying elements found in the 1000 series means that, despite an aggressive etching, it will have little or no residual smut. In general, the more highly alloyed the aluminum, the greater the amount of smut from the etching process.

In order to remove the residual smut, most aluminum alloys will go through a room-temperature nitric acid bath. This is where the type of alloying element will tend to reveal how difficult it can be removed. The nitric acid works well with copper and zinc alloying elements, but one of the more difficult to remove in nitric acid is a silicon-alloyed aluminum. 

high-performance systems for efficient parts cleaning
Parts Cleaning Workshop at PMTS 2025
Precision Cleaning Solvents
AquaEase Infinity System
Cleaning Technologies Group
Quality cleaning solutions
Pickelx one step metal prep
Echoflex modular ultrasonic cleaning machines
Heatmax Heaters ad with immersion heaters
find masking products online
New Acid-Free Bright Nickel Process
The Finishing Industry’s Education and Networking Resource

Related Content

Liquid Coating

Zinc Phosphate: Questions and Answers

Our experts share specific questions about zinc phosphate and pretreatment

Read More
Powder Coating

Corrosion Resistance Testing for Powder Coating

Salt spray can be useful to help compare different pretreatment methods and coatings but it does not tell us much about the corrosion resistance of a part over time in the field. Powder coating expert Rodger Talbert offers insights into how to get a better idea of how to improve a part’s corrosion resistance in the real world.

Read More
Parts Cleaning

Advantages to Pumped Eductor Agitation

Not all agitation methods are created equally. Pumped agitation with eductor nozzles can improve process tanks and quickly show a reduction in operating costs while keeping staff safe, following environmental legislation and preventing pollution.

Read More
Parts Cleaning

Clean Technology Lasers for Coating Adhesion

Laser cleaning systems remove corrosion, grease, residue and existing coatings from metal surfaces quickly, with less preparation and mess than traditional techniques.

Read More

Read Next

sustainability

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Parts Cleaning

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Parts Cleaning Workshop at PMTS 2025