Arc Flash PPE Selection
I’ve been hearing a lot about arc flash protection lately, but I’m not sure if it applies to our operation and, if so, what the requirements are for providing personal protective equipment under this standard. I know it has something to do with our electrical power supply and equipment. Can you help clarify?
Q. I’ve been hearing a lot about arc flash protection lately, but I’m not sure if it applies to our operation and, if so, what the requirements are for providing personal protective equipment under this standard. I know it has something to do with our electrical power supply and equipment. Can you help clarify? S.V.
A. Due to the seriousness of shock and burn injuries associated with arc flash incidences from electric power, there has been a growing awareness and regulatory enforcement of facility electrical safety programs by the Occupational Safety and Health Administration (OSHA). OSHA’s electrical standard is 29 CFR 1910, Subpart S. In addition to the OSHA requirements, facilities should also be aware of the National Fire Protection Association’s electrical standard, NFPA 70E. Based on OSHA’s inspection history over the last several years, it is very likely the agency will use the NFPA 70E standard to determine whether or not you meet its electrical standard.
All attempts should be made to use lockout/tagout procedures and to never work on energized parts. However, there most likely will be situations in which a facility’s electrician will need to perform minor tasks on energized parts such as power panels, circuit breaker panels, motor control centers, disconnect boxes and equipment. One example of justification would be performing diagnostics or testing of electric circuits that can only be performed with equipment energized. In these circumstances, an electrical safety program is critical.
In accordance with NFPA, a proper electrical safety program includes provisions for:
- Justification of work equipment 50 volts or greater
- Energized electrical work permit (shock and flash boundaries)
- Personal Protective Equipment (PPE)
- Training (electrically qualified)
- Labeling
The evaluation, documentation and determination of proper PPE necessary for “qualified” electrical staff when performing work on a piece of energized equipment can be achieved using the following four-step process:
Step 1 – Electrical Equipment Inventory
Start by conducting a plant survey and create an inventory of all the electrical equipment with voltages of 50V or greater. Note that the survey is not limited to panelboards, motor control centers and similar equipment. Items such as control panels on process equipment and anything else that may require energized work must be included. I recommend that you develop a spreadsheet that contains, at a minimum, the equipment location, a specific equipment ID, equipment type and voltage. This information will be needed to complete a hazard/risk category evaluation.
Step 2 – Determine Hazard/Risk Category
There are two approaches that may be taken to establish the hazard/risk category. One option is to have a detailed arc flash study conducted (NFPA 70E 130.3.A), including calculations performed by a qualified electrical engineer. These types of studies are very specific to your electrical equipment. A second option is to use the tables located in NFPA 70E. It is my experience that the tables in NFPA are more conservative, typically requiring significantly more PPE than a detailed study would. The cost in having engineering studies performed may lead some employers to rely more on the NFPA tables. If your facility wishes to have the more detailed engineering study performed, you could rely on the NFPA tables in the interim.
At the end of this evaluation, you should have identified the following:
- Hazard/risk category, voltage, and task for each piece of electrical equipment;
- Special PPE requirements for certain tasks;
- V-rated (voltage rated) gloves requirements; and
- V-rated tool requirements.
- Non-melting clothing (i.e., T-shirt, long-sleeve shirt or pants);
- Fire-resistant clothing (i.e., long-sleeve shirt, pants, coverall, jacket, parka or rainwear); and/or
- Fire-resistant protective equipment (i.e., flash suit jacket, pants, head protection, eye protection, face and head protection, hand protection, and fort protection).
In verifying that you have chosen the proper protective clothing, refer to Table 130.7(C)(11) (Protective Clothing Characteristics) for the definition of the minimum arc rating for the applicable hazard/risk category.
Step 4 – Electrical Equipment Inventory, Labeling and PPE
Now that you have evaluated and categorized all the electrical equipment at the facility with voltages of 50V or greater, finalize the initial inventory identified in Step 1 (Electrical Equipment Inventory) to include work description, hazard category and the required PPE. It may be somewhat challenging to complete the table in that there may be several job tasks (work descriptions) associated with each piece of electrical equipment that will require various PPE depending upon the hazard category ranking. If you do not manage to complete such an inventory, at a minimum have your “qualified” personnel understand how to use the NFPA tables prior to each job task requiring work on energized equipment.
Unless a power panel is for a piece of equipment is located on the equipment or next to it and obviously connected, labeling is required to clearly identify what it energizes. While not required by OSHA, a number of facilities label all their electrical equipment with voltage, hazard class, PPE and clearance distance.
By using the four-step approach outlined above, you will have evaluated and determined what PPE is needed for the qualified personnel to work safely at your facility. Remember to refer to OSHA and NFPA 70E electrical standards for additional information related to justification of work, energized electrical work permit, training and labeling.
Related Content
Novel Wastewater Treatment Targets Micropollutants
Swiss wastewater treatment technology provider Oxyle specializes in advanced wastewater treatment for removal of highly persistent micropollutants such as PFAS.
Read MoreNASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 12th Quarterly Report
This NASF-AESF Foundation research project report covers the 12th quarter of project work (October – December 2023) at the University of Georgia. In our previous report, we described our work on performance and effect of surface fluorinated Ti4O7 anodes on PFAS degradation in reactive electrochemical membrane (REM) mode. This quarter, our experiments involved utilizing porous Ti4O7 plates serving both as anodes and membranes. Tests compared pristine and F-18.6 Ti4O7 anodes at current densities of 10 mA/cm2 and 40 mA/cm2. This 12th quarterly report discusses the mechanisms of the effects on EO performance by anode surface fluorination.
Read MoreNASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters - April 2022-March 2023
This NASF-AESF Foundation research project report covers project work from April 2022 to March 2023 at the University of Illinois at Chicago. The overall objective of this work is to utilize a cost-effective reactive electrochemical membrane (REM) for the removal of PFAS from synthetic electroplating wastewater. Initial results for the oxidation of PFOA with three different catalysts are discussed.
Read MoreUltrafiltration Membranes, Filter Elements for Improved Industrial Water Reuse
Ultrafiltration membranes help with water reuse in a variety of applications.
Read MoreRead Next
Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions
Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.
Read MoreDelivering Increased Benefits to Greenhouse Films
Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.
Read MoreA ‘Clean’ Agenda Offers Unique Presentations in Chicago
The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.
Read More