Powder Coating Institute Certification
Published

Neutralizing pH

I am our facility’s environmental, health and safety manager. Periodically, we have very high-pH wastewaters that cause the pH within the cyanide oxidation step to be well above our desired upper limit of 11. Our operator has requested that we add sulfuric acid into the cyanide oxidation stage whenever the pH rises above 11. I am very concerned about the release of hydrogen cyanide if something goes wrong and the system accidentally drives the pH well below 7. Are there any safer acid substitutes?

Share

Q: I am our facility’s environmental, health and safety manager. As part of our wastewater pretreatment system, we have a single-stage, flow-through cyanide oxidation step before the wastewater mixes with the other waste streams for pH adjustment and metals removal. Our cyanide oxidation has a bleach and caustic feed controlled by ORP and pH controllers, respectively. Periodically, we have very high-pH wastewaters that cause the pH within the cyanide oxidation step to be well above our desired upper limit of 11; sometimes the incoming wastewater has pH above 12.5.

This high pH causes our ORP reading to decrease enough to add excessive amounts of bleach into the wastewater. While this bleach is more than enough to treat the cyanide, it creates problems downstream when the waste streams mix. Our operator is afraid to raise the ORP set point since it works fine during normal flow conditions.

Since the controller has the capability, and we already use concentrated sulfuric acid for the pH adjustment stage, our operator has requested that we add sulfuric acid into the cyanide oxidation stage whenever the pH rises above 11. I am very concerned about the release of hydrogen cyanide if something goes wrong and the system accidentally drives the pH well below 7.
Are there any safer acid substitutes? J.W.

 

A: J.W., you are not the first to express concern about using concentrated sulfuric acid in cyanide treatment; however, it has been used safely in this application for many decades. If you do decide to proceed with sulfuric acid, I would strongly recommend that you cover the reactor tank and install a small exhaust to the outside, discharging as high as possible above the roof. You will not need much flow rate, maybe 50–100 cfm, just enough to keep a slight negative pressure in the headspace between the wastewater and cover as well as enough velocity when the access door is opened.

Another consideration is the use of two pH sensors; if the difference between the two readings exceeds a preset limit, an alarm is sounded and the acid feed shut down.

Yes, there are alternatives, but they are very expensive to implement. Some people have recommended the use of saturated sodium bicarbonate (baking soda) which has a pH in the 8s, however, the massive quantities needed for a flow-through system in order to drive the pH from 12.5 to 11, and its slow reaction time at the high pH you are experiencing, makes it infeasible.
Another “safer acid” is carbonic acid, H2 CO3 , formed by dissolving carbon dioxide, CO2 , into water. In your application, the best way to dissolve CO2 into the waste stream is to pump the wastewater through a sidestream pipe, inject the carbon dioxide through a diffuser in the pipe under pressure, and recirculate the wastewater back to the treatment tank. The carbon dioxide can be supplied from 50-lb high-pressure cylinders or 250-lb low-pressure liquefied cylinders. At the high pH that you described, the carbon dioxide or carbonic acid will react quite quickly, and 1/2–3/4 lb of carbon dioxide has the same neutralizing power as 1 lb of sulfuric acid.

Another advantage of carbon dioxide is that, theoretically at least, it cannot drive the pH lower than about 5.7. Again, the disadvantage is the initial high equipment cost for the carbon dioxide storage, feed, and injection system, especially for such a small application.

Some can argue for the use of phosphoric acid, since it behaves more like a weak acid as the pH decreases, however, it still is powerful enough to drive the pH very low to generate hydrogen cyanide.

I was thinking that you could try a dilute solution of acetic acid, a weak acid, however, I am not quite sure of its reaction with bleach or sodium hypochlorite since acetic acid is an organic compound. I am afraid that some odorous byproducts could be generated, at least.

Last, you can contact your chemical supplier to inquire if they have a proprietary “safe” acid product. One of our clients uses a boiler treatment chemical for their pH adjustment acid feed because of its safety; however, this product may still be able to drive the pH very low.

In summary, the challenge here is to use an acidic material that is powerful enough to neutralize the alkalinity in the wastewater fairly efficiently and effectively, but not have the capability to dangerously lower the pH. Based on my experience, carbon dioxide is the best to meet this criteria, but is likely cost prohibitive in your application. If any reader has an additional experience to share, please e-mail me.
 

Powder Coating Institute Certification
ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
complete finishing application systems
Powder Coating Institute
Your Best Finish Starts With Us!
Steelman Industries Inc.
UV Powder Coating  for Heat Sensitive Substrates
Parts Cleaning Conference
Fischer Technology, Inc.
Heatmax Heaters ad with immersion heaters
The Finishing Industry’s Education and Networking Resource
More blasting. Less part handling.

Related Content

regulation

EPA Readying Fall Nationwide PFAS Survey of Metal Finishing Industry to Inform New Water Discharge Rule

NASF continues discussions with US EPA on the agency’s plans for a nationwide survey of the metal finishing industry on its use of PFAS. NASF plans to review the draft survey and provide feedback to the agency prior to its distribution. Surveys will likely go to a wide range of job shop and captive operations and are scheduled to be sent out in the fall.

Read More
regulation

Novel Wastewater Treatment Targets Micropollutants

Swiss wastewater treatment technology provider Oxyle specializes in advanced wastewater treatment for removal of highly persistent micropollutants such as PFAS.

Read More

Top 5 Areas to Consider Automation of Plating Operations

Automation for finishing operations can lead to improvements in process time, repeatability and consistency of quality. Yet, processes that make sense to explore for these operational efficiencies may not always be readily apparent.  

Read More
nasf

NASF/AESF Foundation Research Project #122: Electrochemical Approaches to Treatment of PFAS in Plating Wastewater - 9th Quarterly Report

The NASF-AESF Foundation Research Board selected a project addressing the problem of PFAS and related chemicals in plating wastewater streams.  This report covers the ninth quarter of work (January-March 2023).  In this report, we describe our work on evaluating the performance of PFAS degradation by electrooxidation using surface fluorinated Ti4O7 anodes in batch mode.

Read More

Read Next

automotive

The 2024 Ford Mustang: All the Colors Available

Although Chevrolet has announced the end of the Camaro and Dodge is offering “Last Call” editions of the Charger and Challenger, the Ford Mustang is launching to its seventh generation.

Read More
regulation

Episode 42: An Interview with Robin Deal, Hubbard-Hall

Hubbard-Hall wastewater treatment specialist Robin Deal discusses the latest trends in wastewater management. 

Read More
Powder Coating

Powder Coating 4.0: Smarter, Faster, More Efficient and Connected

New tools reduce cost and waste, lower manufacturing footprint of powder coating operations.

Read More
Powder Coating Certification