Precision gear pumps
Published

Wear Rate

How fast will ceramic media wear in a vibratory finishing machine?

Steve Marcus, The Markee Corp.

Share

Q. How fast will ceramic media wear in a vibratory finishing machine? I’ve determined that our media (a cone-shaped ceramic media made in China) is 20% consumed in 6 hr of finishing.  H.G.

 

 
A. First of all, a wear rate over 3% an hour is totally unacceptable. This customer did not state if his media that wears over 3% per hour is also a very fast-cutting composition. He stated that they flow 3–4 gal/hr of compound per cubic foot to keep the parts clean. This media cannot cut fast enough to justify its very high wear rate and the very high compound use rate. There are also related problems that are very costly, such as the volume of sludge created. Every pound of media purchased becomes a pound of ceramic dust that settles in drains, tanks, centrifuge bowls, and worst of all, on parts themselves.
 
There are at least 10 basic compositions of ceramic media manufactured in the U.S. Each will have its own characteristic wear and cut rate resulting from the size and shape of the media, size and mass density of the parts, depth of the bowl, the amplitude and frequency of vibration, compound flow rate, compound lubricity, machine drainage, and whether parts are loose or fixtured in the process chamber.
 
In general, the faster the media cuts, the faster it will wear. Media also wears more slowly in round machines and in flow-through tub machines than in closed-batch tub styles. Wear rate is expressed as percent of media weight lost in one hour of processing. The weight loss for good quality cutting media will range from about 0.25–0.75%/hr. Fast-cutting media such as silicon carbide can wear as high 1%/hr, and polishing media with little or no cut may wear at less than 0.15%/hr.
 
Some manufacturers have prepared charts to compare metal removal rate with media wear rate for different compositions. An efficiency index is calculated by dividing the metal removed by the percent of media consumed. This index must be used only along with other factors for making a media selection. 
 
The relationship of media geometry to wear rate is very important and little understood. Most articles on the subject only deal with the media lodging and the ability to reach all areas of the part that need to be deburred or finished. Since we are dealing here with media wear rate, it is opportune to discuss media geometry in that light.
 
A media manufacturer published test data showing that a particular composition would wear at 0.5%/hr. This composition is in the category of “good cutting and good finish.” Every media manufacturer has at least one product in that category, and it is generally their most popular composition. I maintained records over several years using 1-inch media of that composition in several 20 ft3 bowl machines, cutting and finishing forged steel parts at 7 mm amplitude. The parts-to-media ratio was very high, which will result in faster wear on the media. In spite of this and aggressive machine settings, the wear rate was only 4 lb/hr, or about 0.25%/hr.
 
Why was the wear rate only half of the manufacturer’s own published claim? First, look at the wear test parameters: The media was 3/8-inch angle-cut triangles; the machine was a 2 ft3 tub style;  amplitude was 3.5 mm; frequency was 1750 vpm; the test pieces, six in the load, were 1 × 3-inch angle-cut steel. This information would lead you to project a much higher wear rate in the larger machines with twice the amplitude and a higher part/media ratio.
 
Machine settings in a bowl dramatically affect media wear rate, and so does media glazing. These machines were all adjusted to operate identically to give good cutting and a smooth roll. The media was not glazed. The big difference, and this has been demonstrated in dozens of other applications, is the media geometry. The geometry used here was the WEJ, also known as tri-cyl, double-cut cylinder, and some other names. In those days (more than 30 years ago) only one media manufacturer made the WEJ. Today, all the domestic producers offer it. 
Your Best Finish Starts With Us!
Precision gear pumps
ENGINEERED PAINT BOOTHS & FINISHING SOLUTIONS
Heatmax Heaters ad with immersion heaters
New Acid-Free Bright Nickel Process
Gardner Intelligence
The Finishing Industry’s Education and Networking Resource
PMTS 2025 Register Now!
Metal Pretreatment Technology
Pretreatment Washer and Finishing Equipment
PF Podcast
find masking products online

Related Content

Ask The Expert

Having a Blast: Best Practices for Media Blasting

5 considerations for media blasting as surface preparation for coatings.

Read More

Understanding Shot Peening

A look inside shot peening — a process of “hammering” of work pieces with precisely defined blast media.

Read More

AI-Powered Robotic Solutions Support High-Mix Finishing

AI startup offers automation innovations for high-mix, high-variability, manual surface finishing applications.

Read More
management

Wall Colmonoy Hires Business Development Manager, Surfacing Products

Wall Colmonoy welcomes Josh Gardner as its business development manager of surfacing products.

Read More

Read Next

Parts Cleaning

A ‘Clean’ Agenda Offers Unique Presentations in Chicago

The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.   

Read More
workforce development

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Industrial Finishing Equipment