Rectifiers for the Plating Industry
Published

ProPlate Uses Pure Platinum and Gold in Additive Plating Process

The company says pure gold and platinum are superior at conducting electricity and have other performance advantages compared to platinum-iridium alloys and stainless steel.

Share

Gold-plated component.
Photo Credit: ProPlate

ProPlate (Anoka, Minnesota) uses pure platinum or gold with its additive plating process, rather than using a machining process and various methods of limited installation for rigid stainless steel or platinum-iridium alloys as markers and electrodes. In this scenario, the company says electroplating has a clear advantage. Instead of subtractive machining followed by an installation process such as swaging or crimping, electroplating builds the platinum or gold layer gradually, several micro-inches at a time, and can be selectively applied in myriad shapes and thickness designs with tight control of tolerances. Therefore, ProPlate says it is advantageous in this specific application to use an electrode installation because it enables the use of pure soft forms of metal instead of hard platinum-iridium alloys.

Compared to platinum-iridium alloys and stainless steel, pure gold and platinum are superior at conducting electricity and have other performance advantages. The advantage of gold or platinum is that pure gold shares similar properties and characteristics with pure platinum regarding biocompatibility, low potentials for corrosivity and dissolution, high density, ductility and malleability. Gold is a superior electrical and thermal conductor, while platinum has higher electrical resistivity and hardness properties in comparison. These properties are often advantageous for catheter component performance, especially for applications requiring electrodes for sensing, stimulation and ablation. ProPlate uses electroplating processes to apply gold or platinum onto complex catheter component geometries, often resulting in lower-dimensional profiles and eliminating the risk of marker or electrode ring dislodgement. According to ProPlate, gold electrodes and pure platinum electrodes may result in a higher ablation success rate and reduce char/coagulation formation incidents, making these electrodeposited metals the preferred electrode material of choice over platinum-iridium electrode or stainless-steel materials used in ablation applications.

Related Content

  • NASF/AESF Foundation Research Project #123: Electrochemical Manufacturing for Energy Applications – 8th Quarterly Report

    The NASF-AESF Foundation Research Board selected a project on electrodeposition toward developing low-cost and scalable manufacturing processes for hydrogen fuel cells and electrolysis cells for clean transportation and distributed power applications. This report covers the 8th quarter of work (October-December 2023, continuing work on 3D printing anode support for solid oxide fuel cells and electrolyzers.  Work involved the effect of sintering temperature on the amount of porosity and grain size in 3D printed yttria-stabilized zirconia (YSZ).

  • NASF/AESF Foundation Research Project #123: Electrochemical Manufacturing for Energy Applications – 3rd Quarterly Report - Part I

      This is the third quarterly report, covering work during July-September 2022 and consists of a review, “Formidable Challenges in Additive Manufacturing of Solid Oxide Electrolyzers (SOECs) and Solid Oxide Fuel Cells (SOFCs) for Electrolytic Hydrogen Economy toward Global Decarbonization,” prepared and submitted to the peer-reviewed Ceramics Journal for publication.  What follows here is Part I of the review paper, covering the literature on additive manufacturing of SOFCs and SOECs.  Part II, covering opportunities and challenges for additive manufacturing technologies, will be published in January 2023. 

  • NASF/AESF Foundation Research Project #123: Electrochemical Manufacturing for Energy Applications - 9th Quarterly Report

    This NASF-AESF Foundation research project report covers the ninth quarter of project work (January-March 2024) at the University of Texas at Dallas. In this period, we followed our work on 3D printing anode support for solid oxide fuel cells, SOFC (or cathode for solid oxide electrolyzers, SOEC).  We focused on the mechanical properties of 3D printed yttria-stabilized zirconia (YSZ) using a four-point bending test.  We then conducted a statistical analysis to characterize the flexural strength of porous 3D printed YSZ.  The full paper on the ninth quarter work can be accessed and printed at short.pfonline.com/NASF24June2.

Luster-On Products
TriMac BLUE™
Hitachi High-Tech FT200 series
Rectifiers for the Plating Industry
KCH Engineered Systems
In-Place Repairs for Canning Presses
New Acid-Free Bright Nickel Process
Filtration
KCH Engineered Systems