PF Podcast
Published

Coating Thickness Measurement

A REVIEW OF AVAILABLE TEST METHODS, COMMON APPLICATIONS AND INNOVATIVE INSTRUMENTATION...

Paul Lomax, Director of Marketing, Fischer Technology, Inc.

Share

Coating thickness measurement is a concern for both finishers and for companies receiving finished components. Defective coatings lead to rust. As a result, product liability requires quality control of coatings, and in many cases documentation of measurements in an electronic format. Conflicts can occur if a manufacturer and a customer of a finished good use different methods or types of instruments to determine coating thickness.

TEST METHODS

The magnetic induction method measures non-magnetic coatings over ferrous substrates and magnetic coatings over non-magnetic substrates. The process is direct, in that a probe is placed on the part to be measured. When the probe is positioned, the linear distance between the probe tip that contacts the surface and the base substrate is measured.

Inside the measurement probe is a coil that generates a changing magnetic field. When the probe is placed on the substrate, the magnetic flux density of this field is altered. The change in magnetic inductance is measured by a secondary coil. The output of the secondary coil is transferred to a microprocessor where it is viewed as a coating thickness measurement on a digital display.

The magnetic induction method is quick and can be used with either a bench-top or hand-held coating thickness gage. It’s also non-destructive, relatively low-cost, easy to operate, accurate and repeatable, and measurements are instantaneous with a digital display.

THE MAGNETIC INDUCTION METHOD

Common applications for this test method include liquid or powder coatings, as well as plated finishes such as chrome, zinc, cadmium or phosphate over steel or iron substrates.

The eddy-current method of coating thickness measurement measures non-conductive coatings on non-ferrous conductive substrates, non-ferrous conductive coatings on non-conductive substrates and some non-ferrous metal coatings on non-ferrous metals. It is very similar to the magnetic induction method and can even use many of the same probe designs. Advantages of the eddy-current method are also very similar to those of magnetic induction, including low cost, ease of operation, accuracy and repeatability and instantaneous measurement with a digital display.

Eddy-current coating thickness measurement uses a probe that also contains a coil. This probe/coil is driven by a high-frequency oscillator to generate an alternating high-frequency field. When this field is brought near a metallic conductor, eddy currents are generated in that conductive material, which results in the impedance change of the probe coil.

The distance between the probe coil and the conductive substrate material determines the amount of impedance change. Therefore, coating thickness is determined by the impedance change in the form of a digital reading.

Common applications for eddy-current coating thickness measurement include liquid or powder coating over aluminum and non-magnetic stainless steel as well as anodize over aluminum.

A unit measuring powder coating using the magnetic induction method

SELECTING A GAGE

Many instruments available today combine both magnetic induction and eddy-current methods. This allows the user to perform multiple measurement tasks without switching gages. Users also can choose between basic gages that just provide a value on the digital display or gages that store measurements and provide statistical information such as average, standard deviation and high/low values.

Another important selection criterion is based on the shape of the part to be measured. Not all parts can be measured using a gage with a built-in probe. Units that offer a probe on a cable provide more flexibility when it comes to multiple part configurations. Many units with separate probes also offer the ability to exchange probes should the application change; for example, measuring coating thickness on the inner diameter of a tube may require a 90-degree probe, while measurements on a flat surface are best performed with a zero-degree probe. Factors such as curvature, edge effect, surface roughness, substrate thickness, permeability and conductivity all influence coating thickness measurement but can be accounted for through proper calibration.

As previously mentioned, the ability to store measurements for later documentation and report generation is often very important. These types of reports can help to determine spray patterns, for example, or may also be used for incoming inspection of parts. Some gages feature an on-board radio transmitter that allows users to send readings in real time to a computer up to 60 ft away from where the measurements are being taken. Data can be input directly into a statistical process control program, eliminating the need to key in data to save time and eliminate input errors.

THE EDDY CURRENT METHOD

Another option for coating thickness measurement and data documentation is a bench-top system. Bench-top systems provide a large digital display with full statistical evaluation of measurements. This includes mean value, standard deviation, coefficient of variation, maximum and minimum, number of measurements, statistics of single readings or groups; calculation of process capability factors; histograms; probability charts with test for normal distribution; automatic grouping after N measurements and/or automatic final evaluation after N groups; and group evaluation according to group numbers or group identifications. Some bench-top systems even provide customer-specific print form templates.

In addition to documentation benefits, some bench-top systems can combine multiple test methods into one measuring system. A single unit combining multiple test methods benefits companies that perhaps might be plating parts as well as painting in another department, for example. Such systems also use separate probes, meaning they have wider application than built-in coating thickness gages.

SPECIAL APPLICATIONS

Not all coating thickness applications are as straight-forward as measuring paint over steel. Coatings consisting of a paint applied to galvanized sheet steel are sometimes called duplex coatings, and are frequently used in the automotive industry. Thickness of the individual layers of both the paint and galvanize are important. In automotive vehicle body manufacturing zinc thicknesses are between zero and 10 µm. Paint thicknesses are usually up to 150 µm.

The galvanize coating is applied by the sheet metal supplier either by hot-dip galvanizing or by electrogalvanizing. If the zinc coating thickness were uniform, the thickness of the subsequently applied paint coating could be measured using a conventional magnetic induction coating thickness measurement instrument. One would simply have to deduct a constant value from the actual reading.

However, zinc thickness changes when the sheet is formed. During forming, flowing or even scraping off of the zinc coating may occur in areas of severe bending. This may vary its thickness by between 3–9 µm, and occasionally remove the coating altogether.

Similar situations may be encountered when repairing a body area that has coating defects due to sanding and subsequent re-painting of the defective area. In this case, the zinc coating may be sanded away as well, leading to an apparent reduction in the paint thickness if a conventional coating thickness measurement system is used. This is not only problematic for inspection, but also critical to the quality of a cataphoretic paint, because that thickness is typically only about 20 µm. An error of 5-6 µm in the thickness measurement through a reduced zinc coating will exceed the tolerance limits.

OTHER MEASUREMENT TECHNIQUES

There are other methods for measuring coating thickness, especially in automotive applications. These include the Coulometric, beta backscatter, and X-ray fluorescence techniques.

The Coulometric method has many important functions, such as measuring duplex nickel coatings in automotive applications. The technique involves determining the weight of an area of a metallic coating through localized anodic stripping of the coating, the calculating thickness based on mass per unit area.

Thickness measurement is made using an electrolysis cell, which is filled with an electrolyte specifically selected for stripping the particular coating. Constant current runs through the test cell to deplate the coating material, which serves as the anode. With current density and surface area being constant, coating thickness is proportional to the time it takes to strip the coating.

This method is particularly useful for measuring electrically conductive coatings on a conductive substrate.

The beta backscatter method begins when a test sample is exposed to beta particles from a beta-emitting isotope. A beam of beta particles is directed through an aperture onto the coated component, and a portion of these particles is backscattered from the coating through the aperture to penetrate a very thin window of a Geiger Muller (GM) tube. The gas of the GM tube ionizes, causing a momentary discharge across the tube electrodes. The discharge in the form of a pulse is counted by an electronic counter, which is then translated into coating thickness.

Materials of relatively low atomic number backscatter the beta particles at a significantly lower rate than materials of high atomic number. For example, a component with copper as a substrate and a gold coating 40 micro-inches thick, beta particles are scattered by both the substrate and the coating material. If coating thickness increases, the backscatter rate increases. The change in the rate of particles scattered is therefore a measure of coating thickness.

The technique is applicable when the atomic number of the coating and substrate differ by 20%. Applications include thickness measurement of gold, silver, and tin on electronic components, coatings on cutting tools, decorative plating on plumbing fixtures, and vapor-deposited coatings on electronic components, ceramics and glass. Other applications could include organic coatings such as oil or lubricant coatings over metals.

X-ray fluorescence (XRF) is a versatile, non-contact, coating thickness measurement method for very thin multi-layer alloy coatings on small parts.

Measurement is performed by exposing the part to X-radiation. A collimator focuses the X-rays onto an exactly defined area of the test specimen. This X-radiation causes characteristic X-ray emission (fluorescence) from both the coating and the substrate materials. This emission is detected with an energy-dispersive detector.

Using the appropriate electronics, it is possible to register only the emission from the coating material or from the substrate. It is also possible to selectively detect a specific coating when intermediate layers are present. Common applications include printed circuit boards, electronic components, jewelry, and optical components.

 

DeFelsko Corp.

Elcometer, Inc

Elektro-Physik, USA, Inc.

Fischer Technology, Inc.

TestCoat Inc.

Luster-On Products
plating and surface finishing additives
Heatmax Heaters ad with immersion heaters
OptiCenter All-in-One OC11
PF Podcast
The Finishing Industry’s Education and Networking Resource
New Acid-Free Bright Nickel Process
Filtration Systems

Related Content

Electroplating

Attention to Measurement

English vs. Metric — which should you use? Ron Kinne of Haviland Enterprises Inc. explains why you need a firm understanding of both for measuring various aspects of plating processes.

Read More

AESF Heritage: The 2002 Hydrogen Embrittlement Seminar No. 4: Hydrogen Embrittlement – A Personal View

This is last of four papers presented during AESF Week 2002 at the Rosen Center in Orlando, Florida on January 30, 2002, as part of the Hydrogen Embrittlement Seminar. This paper presents a comprehensive overview of the research into hydrogen embrittlement at the turn of the century. The full paper on this work can be accessed and printed at short.pfonline.com/NASF24Sep4.

Read More
surfin

NASF/AESF Foundation Research Project #121: Development of a Sustainability Metrics System and a Technical Solution Method for Sustainable Metal Finishing - 15th Quarterly Report

This NASF-AESF Foundation research project report covers the twelfth quarter of project work (October-December 2023) at Wayne State University in Detroit.  In this period, our main effort focused on the development of a set of Digital Twins (DTs) using the Physics-Informed Neural Network (PINN) technology with application on parts rinsing simulation.

Read More

Mastering Uniformity Through Surface Prep Standardization

By standardizing surface preparation processes and adopting surface energy measurement, a company can achieve uniformity, quality and cost reduction.

Read More

Read Next

Parts Cleaning

A ‘Clean’ Agenda Offers Unique Presentations in Chicago

The 2024 Parts Cleaning Conference, co-located with the International Manufacturing Technology Show, includes presentations by several speakers who are new to the conference and topics that have not been covered in past editions of this event.   

Read More
regulation

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
PMTS 2025 Register Now!