Bringing Powder Coating In-House, free download
Published

Media Lodging

Ceramic media chips and small media are lodging in the parts during our vibratory process. How can we prevent or eliminate these problems?

Pat Wenino, President, M.C. Finishing, MC Finishing

Share

Q. Ceramic media chips and small media are lodging in the parts during our vibratory process. How can we prevent or eliminate these problems? J.F.

A. Ceramic media chips and small media lodging are two separate problems. Your overall solution options include: 1. Selecting a non-chipping ceramic media; 2. Media classification (removal of chips and small media from the media mass).

Selecting a non-chipping ceramic media starts by identifying the main causes of chipping, which can include media shape, media formulation, and parts that are large and heavy.

Media shapes with sharp, protruding edges or points (angle-cut tri-stars, tri-angles and cylinders, left to right, below) are prone to chipping. 

 

 

 

 

Examples of non-chipping ceramic media shapes are cylindrical wedges (left) and cones (right), neither of which have sharp, protruding edges.

 

 

 

 

These media have flats that create long-edge contact time for excellent deburring. They also have spherical surfaces that create single-point part contact for concentrated impact areas, producing excellent surface finishes. Cylindrical wedges and cones roll well in all finishing machines and are available in sizes from 3/8 to 2 inches. When starting with all new media, various sizes will create a media mix that results in reduced chipping.

Media formulation is as critical as media shape for eliminating ceramic media chipping. The harder-polishing and medium-cut ceramic media formulations chip more than the softer-bonding formulations of the faster-cutting media. The best recommendation for non-chipping ceramic media is the high-density (HD) formulation. The HD tough bond is created by higher kiln temperature and cure times during manufacturing. HD media, which is available in all ceramic shapes and sizes, is the heaviest ceramic produced, with weights as heavy as 120 to 140 lbs/cu ft compared with 80 lbs/cu ft for regular ceramic media.

Large, heavy parts crush and chip ceramic media. The media gets caught between the part and the machine’s sidewall as the part rotates, creating media chipping and part damage. These parts have to be fixtured within the finishing systems to eliminate chipping. A soft synthetic plastic media will eliminate part damage on non-fixtured, large, heavy parts, but will also chip.

Small-media lodging problems are created by the ceramic media wearing down. All cutting and deburring media wear from their original size to virtually nothing. The pre-formed media do retain their shapes as they wear, but get smaller and smaller. This type of wear makes small-media lodging problems predictable, but the media can be removed by media classification systems.

Media classification systems will remove media chips and small media from the media mass. This should be built into the machine and provide continuous media classification while the machine is running. Media classification can be done outside of the machine, but without continuous classification, the small-media size problem will quickly reoccur.

Two examples of built-in media classification systems are a slotted-drain system and a slotted media-unload plug. The slots in either system should be 1/16-inch larger than the small media that need to be removed. Media chips also will be removed because they generally are even smaller.

Bowl vibratory machines and continuous in-line tubs are recommended when continuous classification within the machine is required. The media action in the bowl and tubs sweeps the media continuously by the slotted classification systems, enabling small media and chips to be removed. Media classification with standard tub vibrators, high-energy centrifugal discs and centrifugal barrel machines is done external to the machines.  

Luster-On Products
Pretreatment Washer and Finishing Equipment
Heatmax Heaters ad with immersion heaters
The Finishing Industry’s Education and Networking Resource
PMTS 2025 Register Now!
Filtration Systems
Metal Pretreatment Technology
find masking products online
Heatmax Heaters ad with immersion heaters
plating and surface finishing additives
Gardner Intelligence
OptiCenter All-in-One OC11

Related Content

Ask The Expert

Having a Blast: Best Practices for Media Blasting

5 considerations for media blasting as surface preparation for coatings.

Read More

Robot-Ready Grinding Systems for High-Speed Production

Advanced rotary surface grinders now come “robot-ready” to facilitate integration with third party robotic arms and fully automate the process from loading to unloading.

Read More
Parts Cleaning

Hubbard-Hall Technical Team Adds Senior Chemist to Staff

David Keller is joining the Hubbard-Hall technical team as a senior chemist.

Read More
Ask The Expert

Best Practices for Blast Room Maintenance

A high-quality blast room is a large investment. Brandon Acker of Titan Abrasive Systems discusses proper care for your blasting equipment. 

Read More

Read Next

sustainability

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Sponsored

Masking Solutions for Medical Applications

According to Custom Fabricating and Supplies, a cleanroom is ideal for converting, die cutting, laminating, slitting, packaging and assembly of medical-grade products.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Heatmax Heaters ad with short lead times