Parts Cleaning Workshop at PMTS 2025
Published

Rinse Tank Water PH

What effect, if any, will raising the temperature of RO water in a post-anodize, post-chromate rinse tank from ambient to 130°F have on the water’s pH value? Is there a way to rinse in hot RO water, max 130°F, and still be able to maintain a pH level on the part between 5.5 and 8.0 or the water in the rinse tank?

Share

Q. Some of our customer specifications call for rinsing anodized, chromate-selaed parts in cold (ambient) water, while others call for a hot water rinse. What effect, if any, will raising the temperature of RO water in a post-anodize, post-chromate rinse tank from ambient to 130°F have on the water’s pH value?

Is there a way to rinse in hot RO water, max 130°F, and still be able to maintain a pH level on the part between 5.5 and 8.0 or the water in the rinse tank? A.V.

 

A. The short answer to your question is that pH is not affected by temperature. By definition, pH is the negative logarithm of the hydronium ion concentration (pH = -log[H3O+]). As you can see, that relatively simple definition shows no dependence on temperature.

In your case, however, accurate measurement of the rinse water pH will be the more challenging problem.

Depending on the quality of your reverse osmosis (RO) water, you may have difficulty just getting a measurement. Water devoid of any conductive species (ions) will have difficulty producing a stable, reliable pH value, and that pH value will tend to drift over time. Part of the reason for this—and the reason, I suspect, for your question—is the effect of temperature on measured pH, which is caused by the electrochemical method commonly employed in pH measuring instruments.

The primary relationship governing the use of pH measurement equipment is the Nernst equation. In this relationship, temperature and ionic concentration of reactants and products all play a role in the output from the electrochemical cell. This in turn influences the instrument’s measured output, and thus the pH value.

An effective, modern, commercially available pH monitoring system should be capable of temperature compensation to produce a more consistent reading. However, the issue of very low conductivity of the fluid to be measured will still affect the product readout drift, producing an unreliable output.

Considering that you are trying to monitor an industrial rinsing solution, I would suggest another means. Most often it is preferable to measure and control rinse tanks following a process tank such as yours (anodizing or sealing) by use of a conductivity meter.

There are systems available for industrial applications that will allow you to automatically measure conductivity and then provide a set point such that you can trigger a solenoid valve to add fresh rinse water when conductivity in the tank exceeds some preset limit. That would optimize your process by providing consistent water quality and minimizing the amount of water consumption that also reduces the water output to effluent treatment.

As conductivity rises, the pH of the rinse following your anodizing tank will drop as more solution is carried into the tank. You can develop a correlation between the two so you know that a certain conductivity level produces a tank with a pH in a relatively narrow range.

It is difficult to predict the pH trend in the rinse tank following the seal since the seal chemistry can vary significantly. Again, the conductivity meter would be ideally suited to monitoring the buildup of ionic activity carried into the tank.
 

Precision Cleaning Solvents
Quality cleaning solutions
Pickelx one step metal prep
AquaEase Infinity System
Echoflex modular ultrasonic cleaning machines
Cleaning Technologies Group
vacuum vapor degreasers
Parts Cleaning Workshop at PMTS 2025
Gardner Intelligence
Pretreatment Washer and Finishing Equipment
Products Finishing 40 Under 40
Mocap Masking Caps Plugs Tapes

Related Content

Parts Cleaning

Top Reasons to Switch to a Better Cleaning Fluid

Venesia Hurtubise from MicroCare says switching to the new modern cleaning fluids will have a positive impact on your cleaning process.

Read More
sustainability

Advantages to Pumped Eductor Agitation

Not all agitation methods are created equally. Pumped agitation with eductor nozzles can improve process tanks and quickly show a reduction in operating costs while keeping staff safe, following environmental legislation and preventing pollution.

Read More
Parts Cleaning

From Drain to Gain with Smart Wastewater Recovery

Incorporating digital monitoring to maximize performance.

Read More
Parts Cleaning

Replacing Open-Top Vapor Degreasing in Aerospace Manufacturing

Options and considerations for cleaning aerospace parts as regulations tighten on vapor degreasing solvents.

Read More

Read Next

workforce development

Education Bringing Cleaning to Machining

Debuting new speakers and cleaning technology content during this half-day workshop co-located with IMTS 2024.

Read More
sustainability

Episode 45: An Interview with Chandler Mancuso, MacDermid Envio Solutions

Chandler Mancuso, technical director with MacDermid Envio discusses updating your wastewater treatment system and implementing materials recycling solutions to increase efficiencies, control costs and reduce environmental impact.

Read More
Sponsored

Delivering Increased Benefits to Greenhouse Films

Baystar's Borstar technology is helping customers deliver better, more reliable production methods to greenhouse agriculture.

Read More
Parts Cleaning Workshop at PMTS 2025